| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 | /** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this *    list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic *    Semiconductor ASA integrated circuit in a product or a software update for *    such product, must reproduce the above copyright notice, this list of *    conditions and the following disclaimer in the documentation and/or other *    materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its *    contributors may be used to endorse or promote products derived from this *    software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a *    Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse *    engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */#include "ser_phy.h"#include "ser_config.h"#ifdef SER_CONNECTIVITY    #include "ser_phy_config_conn.h"#else    #include "ser_phy_config_app.h"#endif#include "nrf_drv_uart.h"#include "app_error.h"#include "app_util.h"#include "app_util_platform.h"#define UART_TRANSFER_MAX 255static const nrf_drv_uart_t m_uart = NRF_DRV_UART_INSTANCE(0);static const nrf_drv_uart_config_t m_uart_config = {    .pseltxd            = SER_PHY_UART_TX,    .pselrxd            = SER_PHY_UART_RX,    .pselrts            = SER_PHY_UART_RTS,    .pselcts            = SER_PHY_UART_CTS,    .p_context          = NULL,    .interrupt_priority = UART_IRQ_PRIORITY,#if defined(NRF_DRV_UART_WITH_UARTE) && defined(NRF_DRV_UART_WITH_UART)    .use_easy_dma       = true,#endif    // These values are common for application and connectivity, they are    // defined in "ser_config.h".    .hwfc      = SER_PHY_UART_FLOW_CTRL,    .parity    = SER_PHY_UART_PARITY,    .baudrate  = (nrf_uart_baudrate_t)SER_PHY_UART_BAUDRATE};static bool volatile   m_tx_in_progress;static uint8_t         m_tx_header_buf[SER_PHY_HEADER_SIZE];static uint16_t        m_bytes_to_transmit;static uint8_t const * mp_tx_buffer;static uint8_t         m_rx_header_buf[SER_PHY_HEADER_SIZE];static uint16_t        m_bytes_to_receive;static uint8_t         m_rx_drop_buf[1];static ser_phy_events_handler_t m_ser_phy_event_handler;static ser_phy_evt_t m_ser_phy_rx_event;static void packet_sent_callback(void){    static ser_phy_evt_t const event = {        .evt_type = SER_PHY_EVT_TX_PKT_SENT,    };    m_ser_phy_event_handler(event);}static void buffer_request_callback(uint16_t num_of_bytes){    m_ser_phy_rx_event.evt_type = SER_PHY_EVT_RX_BUF_REQUEST;    m_ser_phy_rx_event.evt_params.rx_buf_request.num_of_bytes = num_of_bytes;    m_ser_phy_event_handler(m_ser_phy_rx_event);}static void packet_received_callback(void){    m_ser_phy_event_handler(m_ser_phy_rx_event);}static void packet_dropped_callback(void){    static ser_phy_evt_t const event = {        .evt_type = SER_PHY_EVT_RX_PKT_DROPPED,    };    m_ser_phy_event_handler(event);}static void hardware_error_callback(uint32_t hw_error){    ser_phy_evt_t event = {        .evt_type = SER_PHY_EVT_HW_ERROR,        .evt_params.hw_error.error_code = hw_error,    };    m_ser_phy_event_handler(event);}static void packet_rx_start(void){    APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, m_rx_header_buf,        SER_PHY_HEADER_SIZE));}static void packet_byte_drop(void){    APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, m_rx_drop_buf, 1));}static void uart_event_handler(nrf_drv_uart_event_t * p_event,                               void * p_context){    (void)p_context;    switch (p_event->type)    {        case NRF_DRV_UART_EVT_ERROR:            // Process the error only if this is a parity or overrun error.            // Break and framing errors will always occur before the other            // side becomes active.            if (p_event->data.error.error_mask &                (NRF_UART_ERROR_PARITY_MASK | NRF_UART_ERROR_OVERRUN_MASK))            {                // Pass error source to upper layer.                hardware_error_callback(p_event->data.error.error_mask);            }            packet_rx_start();            break;        case NRF_DRV_UART_EVT_TX_DONE:            if (p_event->data.rxtx.p_data == m_tx_header_buf)            {#if (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                if (m_bytes_to_transmit > UART_TRANSFER_MAX)                {                    APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, mp_tx_buffer,                        UART_TRANSFER_MAX));                }                else#endif // (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                {                    APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, mp_tx_buffer,                        m_bytes_to_transmit));                }            }            else            {#if (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                ASSERT(p_event->data.rxtx.bytes <= m_bytes_to_transmit);                m_bytes_to_transmit -= p_event->data.rxtx.bytes;                if (m_bytes_to_transmit != 0)                {                    APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart,                        p_event->data.rxtx.p_data + p_event->data.rxtx.bytes,                        m_bytes_to_transmit < UART_TRANSFER_MAX ?                            m_bytes_to_transmit : UART_TRANSFER_MAX));                }                else#endif // (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                {                    m_tx_in_progress = false;                    packet_sent_callback();                }            }            break;        case NRF_DRV_UART_EVT_RX_DONE:            if (p_event->data.rxtx.p_data == m_rx_header_buf)            {                m_bytes_to_receive = uint16_decode(m_rx_header_buf);                buffer_request_callback(m_bytes_to_receive);            }            else if (p_event->data.rxtx.p_data == m_rx_drop_buf)            {                --m_bytes_to_receive;                if (m_bytes_to_receive != 0)                {                    packet_byte_drop();                }                else                {                    packet_dropped_callback();                    packet_rx_start();                }            }            else            {#if (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                ASSERT(p_event->data.rxtx.bytes <= m_bytes_to_receive);                m_bytes_to_receive -= p_event->data.rxtx.bytes;                if (m_bytes_to_receive != 0)                {                    APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart,                        p_event->data.rxtx.p_data + p_event->data.rxtx.bytes,                        m_bytes_to_receive < UART_TRANSFER_MAX ?                            m_bytes_to_receive : UART_TRANSFER_MAX));                }                else#endif // (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX)                {                    packet_received_callback();                    packet_rx_start();                }            }            break;        default:            APP_ERROR_CHECK(NRF_ERROR_INTERNAL);    }}/** API FUNCTIONS */uint32_t ser_phy_open(ser_phy_events_handler_t events_handler){    uint32_t err_code;    if (events_handler == NULL)    {        return NRF_ERROR_NULL;    }    // Check if function was not called before.    if (m_ser_phy_event_handler != NULL)    {        return NRF_ERROR_INVALID_STATE;    }    err_code = nrf_drv_uart_init(&m_uart, &m_uart_config, uart_event_handler);    if (err_code != NRF_SUCCESS)    {        return NRF_ERROR_INVALID_PARAM;    }    m_ser_phy_event_handler = events_handler;    packet_rx_start();    return err_code;}uint32_t ser_phy_tx_pkt_send(const uint8_t * p_buffer, uint16_t num_of_bytes){    if (p_buffer == NULL)    {        return NRF_ERROR_NULL;    }    else if (num_of_bytes == 0)    {        return NRF_ERROR_INVALID_PARAM;    }    bool busy;    CRITICAL_REGION_ENTER();    busy = m_tx_in_progress;    m_tx_in_progress = true;    CRITICAL_REGION_EXIT();    if (busy)    {        return NRF_ERROR_BUSY;    }    (void)uint16_encode(num_of_bytes, m_tx_header_buf);    mp_tx_buffer = p_buffer;    m_bytes_to_transmit = num_of_bytes;    APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, m_tx_header_buf,        SER_PHY_HEADER_SIZE));    return NRF_SUCCESS;}uint32_t ser_phy_rx_buf_set(uint8_t * p_buffer){    if (m_ser_phy_rx_event.evt_type != SER_PHY_EVT_RX_BUF_REQUEST)    {        return NRF_ERROR_INVALID_STATE;    }    m_ser_phy_rx_event.evt_type = SER_PHY_EVT_RX_PKT_RECEIVED;    m_ser_phy_rx_event.evt_params.rx_pkt_received.p_buffer = p_buffer;    m_ser_phy_rx_event.evt_params.rx_pkt_received.num_of_bytes =        m_bytes_to_receive;    // If there is not enough memory to receive the packet (no buffer was    // provided), drop its data byte by byte (using an internal 1-byte buffer).    if (p_buffer == NULL)    {        packet_byte_drop();    }#if (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX)    else if (m_bytes_to_receive > UART_TRANSFER_MAX)    {        APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, p_buffer, UART_TRANSFER_MAX));    }#endif // (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX)    else    {        APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, p_buffer, m_bytes_to_receive));    }    return NRF_SUCCESS;}void ser_phy_close(void){    nrf_drv_uart_uninit(&m_uart);    m_ser_phy_event_handler = NULL;}void ser_phy_interrupts_enable(void){    IRQn_Type irqn;#if defined(NRF_DRV_UART_WITH_UARTE)    irqn = nrfx_get_irq_number(m_uart.uarte.p_reg);#else    irqn = nrfx_get_irq_number(m_uart.uart.p_reg);#endif    NVIC_EnableIRQ(irqn);}void ser_phy_interrupts_disable(void){    IRQn_Type irqn;#if defined(NRF_DRV_UART_WITH_UARTE)    irqn = nrfx_get_irq_number(m_uart.uarte.p_reg);#else    irqn = nrfx_get_irq_number(m_uart.uart.p_reg);#endif    NVIC_DisableIRQ(irqn);}
 |