/** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "ser_phy.h" #include "ser_config.h" #ifdef SER_CONNECTIVITY #include "ser_phy_config_conn.h" #else #include "ser_phy_config_app.h" #endif #include "nrf_drv_uart.h" #include "app_error.h" #include "app_util.h" #include "app_util_platform.h" #define UART_TRANSFER_MAX 255 static const nrf_drv_uart_t m_uart = NRF_DRV_UART_INSTANCE(0); static const nrf_drv_uart_config_t m_uart_config = { .pseltxd = SER_PHY_UART_TX, .pselrxd = SER_PHY_UART_RX, .pselrts = SER_PHY_UART_RTS, .pselcts = SER_PHY_UART_CTS, .p_context = NULL, .interrupt_priority = UART_IRQ_PRIORITY, #if defined(NRF_DRV_UART_WITH_UARTE) && defined(NRF_DRV_UART_WITH_UART) .use_easy_dma = true, #endif // These values are common for application and connectivity, they are // defined in "ser_config.h". .hwfc = SER_PHY_UART_FLOW_CTRL, .parity = SER_PHY_UART_PARITY, .baudrate = (nrf_uart_baudrate_t)SER_PHY_UART_BAUDRATE }; static bool volatile m_tx_in_progress; static uint8_t m_tx_header_buf[SER_PHY_HEADER_SIZE]; static uint16_t m_bytes_to_transmit; static uint8_t const * mp_tx_buffer; static uint8_t m_rx_header_buf[SER_PHY_HEADER_SIZE]; static uint16_t m_bytes_to_receive; static uint8_t m_rx_drop_buf[1]; static ser_phy_events_handler_t m_ser_phy_event_handler; static ser_phy_evt_t m_ser_phy_rx_event; static void packet_sent_callback(void) { static ser_phy_evt_t const event = { .evt_type = SER_PHY_EVT_TX_PKT_SENT, }; m_ser_phy_event_handler(event); } static void buffer_request_callback(uint16_t num_of_bytes) { m_ser_phy_rx_event.evt_type = SER_PHY_EVT_RX_BUF_REQUEST; m_ser_phy_rx_event.evt_params.rx_buf_request.num_of_bytes = num_of_bytes; m_ser_phy_event_handler(m_ser_phy_rx_event); } static void packet_received_callback(void) { m_ser_phy_event_handler(m_ser_phy_rx_event); } static void packet_dropped_callback(void) { static ser_phy_evt_t const event = { .evt_type = SER_PHY_EVT_RX_PKT_DROPPED, }; m_ser_phy_event_handler(event); } static void hardware_error_callback(uint32_t hw_error) { ser_phy_evt_t event = { .evt_type = SER_PHY_EVT_HW_ERROR, .evt_params.hw_error.error_code = hw_error, }; m_ser_phy_event_handler(event); } static void packet_rx_start(void) { APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, m_rx_header_buf, SER_PHY_HEADER_SIZE)); } static void packet_byte_drop(void) { APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, m_rx_drop_buf, 1)); } static void uart_event_handler(nrf_drv_uart_event_t * p_event, void * p_context) { (void)p_context; switch (p_event->type) { case NRF_DRV_UART_EVT_ERROR: // Process the error only if this is a parity or overrun error. // Break and framing errors will always occur before the other // side becomes active. if (p_event->data.error.error_mask & (NRF_UART_ERROR_PARITY_MASK | NRF_UART_ERROR_OVERRUN_MASK)) { // Pass error source to upper layer. hardware_error_callback(p_event->data.error.error_mask); } packet_rx_start(); break; case NRF_DRV_UART_EVT_TX_DONE: if (p_event->data.rxtx.p_data == m_tx_header_buf) { #if (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX) if (m_bytes_to_transmit > UART_TRANSFER_MAX) { APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, mp_tx_buffer, UART_TRANSFER_MAX)); } else #endif // (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX) { APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, mp_tx_buffer, m_bytes_to_transmit)); } } else { #if (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX) ASSERT(p_event->data.rxtx.bytes <= m_bytes_to_transmit); m_bytes_to_transmit -= p_event->data.rxtx.bytes; if (m_bytes_to_transmit != 0) { APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, p_event->data.rxtx.p_data + p_event->data.rxtx.bytes, m_bytes_to_transmit < UART_TRANSFER_MAX ? m_bytes_to_transmit : UART_TRANSFER_MAX)); } else #endif // (SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE > UART_TRANSFER_MAX) { m_tx_in_progress = false; packet_sent_callback(); } } break; case NRF_DRV_UART_EVT_RX_DONE: if (p_event->data.rxtx.p_data == m_rx_header_buf) { m_bytes_to_receive = uint16_decode(m_rx_header_buf); buffer_request_callback(m_bytes_to_receive); } else if (p_event->data.rxtx.p_data == m_rx_drop_buf) { --m_bytes_to_receive; if (m_bytes_to_receive != 0) { packet_byte_drop(); } else { packet_dropped_callback(); packet_rx_start(); } } else { #if (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX) ASSERT(p_event->data.rxtx.bytes <= m_bytes_to_receive); m_bytes_to_receive -= p_event->data.rxtx.bytes; if (m_bytes_to_receive != 0) { APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, p_event->data.rxtx.p_data + p_event->data.rxtx.bytes, m_bytes_to_receive < UART_TRANSFER_MAX ? m_bytes_to_receive : UART_TRANSFER_MAX)); } else #endif // (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX) { packet_received_callback(); packet_rx_start(); } } break; default: APP_ERROR_CHECK(NRF_ERROR_INTERNAL); } } /** API FUNCTIONS */ uint32_t ser_phy_open(ser_phy_events_handler_t events_handler) { uint32_t err_code; if (events_handler == NULL) { return NRF_ERROR_NULL; } // Check if function was not called before. if (m_ser_phy_event_handler != NULL) { return NRF_ERROR_INVALID_STATE; } err_code = nrf_drv_uart_init(&m_uart, &m_uart_config, uart_event_handler); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INVALID_PARAM; } m_ser_phy_event_handler = events_handler; packet_rx_start(); return err_code; } uint32_t ser_phy_tx_pkt_send(const uint8_t * p_buffer, uint16_t num_of_bytes) { if (p_buffer == NULL) { return NRF_ERROR_NULL; } else if (num_of_bytes == 0) { return NRF_ERROR_INVALID_PARAM; } bool busy; CRITICAL_REGION_ENTER(); busy = m_tx_in_progress; m_tx_in_progress = true; CRITICAL_REGION_EXIT(); if (busy) { return NRF_ERROR_BUSY; } (void)uint16_encode(num_of_bytes, m_tx_header_buf); mp_tx_buffer = p_buffer; m_bytes_to_transmit = num_of_bytes; APP_ERROR_CHECK(nrf_drv_uart_tx(&m_uart, m_tx_header_buf, SER_PHY_HEADER_SIZE)); return NRF_SUCCESS; } uint32_t ser_phy_rx_buf_set(uint8_t * p_buffer) { if (m_ser_phy_rx_event.evt_type != SER_PHY_EVT_RX_BUF_REQUEST) { return NRF_ERROR_INVALID_STATE; } m_ser_phy_rx_event.evt_type = SER_PHY_EVT_RX_PKT_RECEIVED; m_ser_phy_rx_event.evt_params.rx_pkt_received.p_buffer = p_buffer; m_ser_phy_rx_event.evt_params.rx_pkt_received.num_of_bytes = m_bytes_to_receive; // If there is not enough memory to receive the packet (no buffer was // provided), drop its data byte by byte (using an internal 1-byte buffer). if (p_buffer == NULL) { packet_byte_drop(); } #if (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX) else if (m_bytes_to_receive > UART_TRANSFER_MAX) { APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, p_buffer, UART_TRANSFER_MAX)); } #endif // (SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE > UART_TRANSFER_MAX) else { APP_ERROR_CHECK(nrf_drv_uart_rx(&m_uart, p_buffer, m_bytes_to_receive)); } return NRF_SUCCESS; } void ser_phy_close(void) { nrf_drv_uart_uninit(&m_uart); m_ser_phy_event_handler = NULL; } void ser_phy_interrupts_enable(void) { IRQn_Type irqn; #if defined(NRF_DRV_UART_WITH_UARTE) irqn = nrfx_get_irq_number(m_uart.uarte.p_reg); #else irqn = nrfx_get_irq_number(m_uart.uart.p_reg); #endif NVIC_EnableIRQ(irqn); } void ser_phy_interrupts_disable(void) { IRQn_Type irqn; #if defined(NRF_DRV_UART_WITH_UARTE) irqn = nrfx_get_irq_number(m_uart.uarte.p_reg); #else irqn = nrfx_get_irq_number(m_uart.uart.p_reg); #endif NVIC_DisableIRQ(irqn); }