12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513 |
- import sys
- import hashlib
- import pytest
- import numpy as np
- from numpy.linalg import LinAlgError
- from numpy.testing import (
- assert_, assert_raises, assert_equal, assert_allclose,
- assert_warns, assert_no_warnings, assert_array_equal,
- assert_array_almost_equal, suppress_warnings)
- from numpy.random import Generator, MT19937, SeedSequence
- random = Generator(MT19937())
- JUMP_TEST_DATA = [
- {
- "seed": 0,
- "steps": 10,
- "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9},
- "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598},
- },
- {
- "seed":384908324,
- "steps":312,
- "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311},
- "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276},
- },
- {
- "seed": [839438204, 980239840, 859048019, 821],
- "steps": 511,
- "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510},
- "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475},
- },
- ]
- @pytest.fixture(scope='module', params=[True, False])
- def endpoint(request):
- return request.param
- class TestSeed:
- def test_scalar(self):
- s = Generator(MT19937(0))
- assert_equal(s.integers(1000), 479)
- s = Generator(MT19937(4294967295))
- assert_equal(s.integers(1000), 324)
- def test_array(self):
- s = Generator(MT19937(range(10)))
- assert_equal(s.integers(1000), 465)
- s = Generator(MT19937(np.arange(10)))
- assert_equal(s.integers(1000), 465)
- s = Generator(MT19937([0]))
- assert_equal(s.integers(1000), 479)
- s = Generator(MT19937([4294967295]))
- assert_equal(s.integers(1000), 324)
- def test_seedsequence(self):
- s = MT19937(SeedSequence(0))
- assert_equal(s.random_raw(1), 2058676884)
- def test_invalid_scalar(self):
- # seed must be an unsigned 32 bit integer
- assert_raises(TypeError, MT19937, -0.5)
- assert_raises(ValueError, MT19937, -1)
- def test_invalid_array(self):
- # seed must be an unsigned integer
- assert_raises(TypeError, MT19937, [-0.5])
- assert_raises(ValueError, MT19937, [-1])
- assert_raises(ValueError, MT19937, [1, -2, 4294967296])
- def test_noninstantized_bitgen(self):
- assert_raises(ValueError, Generator, MT19937)
- class TestBinomial:
- def test_n_zero(self):
- # Tests the corner case of n == 0 for the binomial distribution.
- # binomial(0, p) should be zero for any p in [0, 1].
- # This test addresses issue #3480.
- zeros = np.zeros(2, dtype='int')
- for p in [0, .5, 1]:
- assert_(random.binomial(0, p) == 0)
- assert_array_equal(random.binomial(zeros, p), zeros)
- def test_p_is_nan(self):
- # Issue #4571.
- assert_raises(ValueError, random.binomial, 1, np.nan)
- class TestMultinomial:
- def test_basic(self):
- random.multinomial(100, [0.2, 0.8])
- def test_zero_probability(self):
- random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
- def test_int_negative_interval(self):
- assert_(-5 <= random.integers(-5, -1) < -1)
- x = random.integers(-5, -1, 5)
- assert_(np.all(-5 <= x))
- assert_(np.all(x < -1))
- def test_size(self):
- # gh-3173
- p = [0.5, 0.5]
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
- assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
- assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
- (2, 2, 2))
- assert_raises(TypeError, random.multinomial, 1, p,
- float(1))
- def test_invalid_prob(self):
- assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
- assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
- def test_invalid_n(self):
- assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
- assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2])
- def test_p_non_contiguous(self):
- p = np.arange(15.)
- p /= np.sum(p[1::3])
- pvals = p[1::3]
- random = Generator(MT19937(1432985819))
- non_contig = random.multinomial(100, pvals=pvals)
- random = Generator(MT19937(1432985819))
- contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
- assert_array_equal(non_contig, contig)
- def test_multidimensional_pvals(self):
- assert_raises(ValueError, random.multinomial, 10, [[0, 1]])
- assert_raises(ValueError, random.multinomial, 10, [[0], [1]])
- assert_raises(ValueError, random.multinomial, 10, [[[0], [1]], [[1], [0]]])
- assert_raises(ValueError, random.multinomial, 10, np.array([[0, 1], [1, 0]]))
- class TestMultivariateHypergeometric:
- def setup(self):
- self.seed = 8675309
- def test_argument_validation(self):
- # Error cases...
- # `colors` must be a 1-d sequence
- assert_raises(ValueError, random.multivariate_hypergeometric,
- 10, 4)
- # Negative nsample
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [2, 3, 4], -1)
- # Negative color
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [-1, 2, 3], 2)
- # nsample exceeds sum(colors)
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [2, 3, 4], 10)
- # nsample exceeds sum(colors) (edge case of empty colors)
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [], 1)
- # Validation errors associated with very large values in colors.
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [999999999, 101], 5, 1, 'marginals')
- int64_info = np.iinfo(np.int64)
- max_int64 = int64_info.max
- max_int64_index = max_int64 // int64_info.dtype.itemsize
- assert_raises(ValueError, random.multivariate_hypergeometric,
- [max_int64_index - 100, 101], 5, 1, 'count')
- @pytest.mark.parametrize('method', ['count', 'marginals'])
- def test_edge_cases(self, method):
- # Set the seed, but in fact, all the results in this test are
- # deterministic, so we don't really need this.
- random = Generator(MT19937(self.seed))
- x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method)
- assert_array_equal(x, [0, 0, 0])
- x = random.multivariate_hypergeometric([], 0, method=method)
- assert_array_equal(x, [])
- x = random.multivariate_hypergeometric([], 0, size=1, method=method)
- assert_array_equal(x, np.empty((1, 0), dtype=np.int64))
- x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method)
- assert_array_equal(x, [0, 0, 0])
- x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method)
- assert_array_equal(x, [3, 0, 0])
- colors = [1, 1, 0, 1, 1]
- x = random.multivariate_hypergeometric(colors, sum(colors),
- method=method)
- assert_array_equal(x, colors)
- x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3,
- method=method)
- assert_array_equal(x, [[3, 4, 5]]*3)
- # Cases for nsample:
- # nsample < 10
- # 10 <= nsample < colors.sum()/2
- # colors.sum()/2 < nsample < colors.sum() - 10
- # colors.sum() - 10 < nsample < colors.sum()
- @pytest.mark.parametrize('nsample', [8, 25, 45, 55])
- @pytest.mark.parametrize('method', ['count', 'marginals'])
- @pytest.mark.parametrize('size', [5, (2, 3), 150000])
- def test_typical_cases(self, nsample, method, size):
- random = Generator(MT19937(self.seed))
- colors = np.array([10, 5, 20, 25])
- sample = random.multivariate_hypergeometric(colors, nsample, size,
- method=method)
- if isinstance(size, int):
- expected_shape = (size,) + colors.shape
- else:
- expected_shape = size + colors.shape
- assert_equal(sample.shape, expected_shape)
- assert_((sample >= 0).all())
- assert_((sample <= colors).all())
- assert_array_equal(sample.sum(axis=-1),
- np.full(size, fill_value=nsample, dtype=int))
- if isinstance(size, int) and size >= 100000:
- # This sample is large enough to compare its mean to
- # the expected values.
- assert_allclose(sample.mean(axis=0),
- nsample * colors / colors.sum(),
- rtol=1e-3, atol=0.005)
- def test_repeatability1(self):
- random = Generator(MT19937(self.seed))
- sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5,
- method='count')
- expected = np.array([[2, 1, 2],
- [2, 1, 2],
- [1, 1, 3],
- [2, 0, 3],
- [2, 1, 2]])
- assert_array_equal(sample, expected)
- def test_repeatability2(self):
- random = Generator(MT19937(self.seed))
- sample = random.multivariate_hypergeometric([20, 30, 50], 50,
- size=5,
- method='marginals')
- expected = np.array([[ 9, 17, 24],
- [ 7, 13, 30],
- [ 9, 15, 26],
- [ 9, 17, 24],
- [12, 14, 24]])
- assert_array_equal(sample, expected)
- def test_repeatability3(self):
- random = Generator(MT19937(self.seed))
- sample = random.multivariate_hypergeometric([20, 30, 50], 12,
- size=5,
- method='marginals')
- expected = np.array([[2, 3, 7],
- [5, 3, 4],
- [2, 5, 5],
- [5, 3, 4],
- [1, 5, 6]])
- assert_array_equal(sample, expected)
- class TestSetState:
- def setup(self):
- self.seed = 1234567890
- self.rg = Generator(MT19937(self.seed))
- self.bit_generator = self.rg.bit_generator
- self.state = self.bit_generator.state
- self.legacy_state = (self.state['bit_generator'],
- self.state['state']['key'],
- self.state['state']['pos'])
- def test_gaussian_reset(self):
- # Make sure the cached every-other-Gaussian is reset.
- old = self.rg.standard_normal(size=3)
- self.bit_generator.state = self.state
- new = self.rg.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_gaussian_reset_in_media_res(self):
- # When the state is saved with a cached Gaussian, make sure the
- # cached Gaussian is restored.
- self.rg.standard_normal()
- state = self.bit_generator.state
- old = self.rg.standard_normal(size=3)
- self.bit_generator.state = state
- new = self.rg.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_negative_binomial(self):
- # Ensure that the negative binomial results take floating point
- # arguments without truncation.
- self.rg.negative_binomial(0.5, 0.5)
- class TestIntegers:
- rfunc = random.integers
- # valid integer/boolean types
- itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
- np.int32, np.uint32, np.int64, np.uint64]
- def test_unsupported_type(self, endpoint):
- assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float)
- def test_bounds_checking(self, endpoint):
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, ubnd, lbnd,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint,
- dtype=dt)
- assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1],
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, [ubnd], [lbnd],
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, 1, [0],
- endpoint=endpoint, dtype=dt)
- def test_bounds_checking_array(self, endpoint):
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint)
- assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, [lbnd] * 2,
- [ubnd + 1] * 2, endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2,
- endpoint=endpoint, dtype=dt)
- assert_raises(ValueError, self.rfunc, [1] * 2, 0,
- endpoint=endpoint, dtype=dt)
- def test_rng_zero_and_extremes(self, endpoint):
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- is_open = not endpoint
- tgt = ubnd - 1
- assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
- endpoint=endpoint, dtype=dt), tgt)
- assert_equal(self.rfunc([tgt], tgt + is_open, size=1000,
- endpoint=endpoint, dtype=dt), tgt)
- tgt = lbnd
- assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
- endpoint=endpoint, dtype=dt), tgt)
- assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000,
- endpoint=endpoint, dtype=dt), tgt)
- tgt = (lbnd + ubnd) // 2
- assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
- endpoint=endpoint, dtype=dt), tgt)
- assert_equal(self.rfunc([tgt], [tgt + is_open],
- size=1000, endpoint=endpoint, dtype=dt),
- tgt)
- def test_rng_zero_and_extremes_array(self, endpoint):
- size = 1000
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- tgt = ubnd - 1
- assert_equal(self.rfunc([tgt], [tgt + 1],
- size=size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
- tgt = lbnd
- assert_equal(self.rfunc([tgt], [tgt + 1],
- size=size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
- tgt = (lbnd + ubnd) // 2
- assert_equal(self.rfunc([tgt], [tgt + 1],
- size=size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
- assert_equal(self.rfunc(
- [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
- def test_full_range(self, endpoint):
- # Test for ticket #1690
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- try:
- self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
- except Exception as e:
- raise AssertionError("No error should have been raised, "
- "but one was with the following "
- "message:\n\n%s" % str(e))
- def test_full_range_array(self, endpoint):
- # Test for ticket #1690
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- try:
- self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt)
- except Exception as e:
- raise AssertionError("No error should have been raised, "
- "but one was with the following "
- "message:\n\n%s" % str(e))
- def test_in_bounds_fuzz(self, endpoint):
- # Don't use fixed seed
- random = Generator(MT19937())
- for dt in self.itype[1:]:
- for ubnd in [4, 8, 16]:
- vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16,
- endpoint=endpoint, dtype=dt)
- assert_(vals.max() < ubnd)
- assert_(vals.min() >= 2)
- vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint,
- dtype=bool)
- assert_(vals.max() < 2)
- assert_(vals.min() >= 0)
- def test_scalar_array_equiv(self, endpoint):
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- size = 1000
- random = Generator(MT19937(1234))
- scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint,
- dtype=dt)
- random = Generator(MT19937(1234))
- scalar_array = random.integers([lbnd], [ubnd], size=size,
- endpoint=endpoint, dtype=dt)
- random = Generator(MT19937(1234))
- array = random.integers([lbnd] * size, [ubnd] *
- size, size=size, endpoint=endpoint, dtype=dt)
- assert_array_equal(scalar, scalar_array)
- assert_array_equal(scalar, array)
- def test_repeatability(self, endpoint):
- # We use a sha256 hash of generated sequences of 1000 samples
- # in the range [0, 6) for all but bool, where the range
- # is [0, 2). Hashes are for little endian numbers.
- tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3',
- 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
- 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
- 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
- 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1',
- 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4',
- 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b',
- 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1',
- 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'}
- for dt in self.itype[1:]:
- random = Generator(MT19937(1234))
- # view as little endian for hash
- if sys.byteorder == 'little':
- val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
- dtype=dt)
- else:
- val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
- dtype=dt).byteswap()
- res = hashlib.sha256(val).hexdigest()
- assert_(tgt[np.dtype(dt).name] == res)
- # bools do not depend on endianness
- random = Generator(MT19937(1234))
- val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint,
- dtype=bool).view(np.int8)
- res = hashlib.sha256(val).hexdigest()
- assert_(tgt[np.dtype(bool).name] == res)
- def test_repeatability_broadcasting(self, endpoint):
- for dt in self.itype:
- lbnd = 0 if dt in (bool, np.bool_) else np.iinfo(dt).min
- ubnd = 2 if dt in (bool, np.bool_) else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- # view as little endian for hash
- random = Generator(MT19937(1234))
- val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint,
- dtype=dt)
- random = Generator(MT19937(1234))
- val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint,
- dtype=dt)
- assert_array_equal(val, val_bc)
- random = Generator(MT19937(1234))
- val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000,
- endpoint=endpoint, dtype=dt)
- assert_array_equal(val, val_bc)
- @pytest.mark.parametrize(
- 'bound, expected',
- [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612,
- 3769704066, 1170797179, 4108474671])),
- (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613,
- 3769704067, 1170797180, 4108474672])),
- (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673,
- 1831631863, 1215661561, 3869512430]))]
- )
- def test_repeatability_32bit_boundary(self, bound, expected):
- for size in [None, len(expected)]:
- random = Generator(MT19937(1234))
- x = random.integers(bound, size=size)
- assert_equal(x, expected if size is not None else expected[0])
- def test_repeatability_32bit_boundary_broadcasting(self):
- desired = np.array([[[1622936284, 3620788691, 1659384060],
- [1417365545, 760222891, 1909653332],
- [3788118662, 660249498, 4092002593]],
- [[3625610153, 2979601262, 3844162757],
- [ 685800658, 120261497, 2694012896],
- [1207779440, 1586594375, 3854335050]],
- [[3004074748, 2310761796, 3012642217],
- [2067714190, 2786677879, 1363865881],
- [ 791663441, 1867303284, 2169727960]],
- [[1939603804, 1250951100, 298950036],
- [1040128489, 3791912209, 3317053765],
- [3155528714, 61360675, 2305155588]],
- [[ 817688762, 1335621943, 3288952434],
- [1770890872, 1102951817, 1957607470],
- [3099996017, 798043451, 48334215]]])
- for size in [None, (5, 3, 3)]:
- random = Generator(MT19937(12345))
- x = random.integers([[-1], [0], [1]],
- [2**32 - 1, 2**32, 2**32 + 1],
- size=size)
- assert_array_equal(x, desired if size is not None else desired[0])
- def test_int64_uint64_broadcast_exceptions(self, endpoint):
- configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)),
- np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0),
- (-2**63-1, -2**63-1))}
- for dtype in configs:
- for config in configs[dtype]:
- low, high = config
- high = high - endpoint
- low_a = np.array([[low]*10])
- high_a = np.array([high] * 10)
- assert_raises(ValueError, random.integers, low, high,
- endpoint=endpoint, dtype=dtype)
- assert_raises(ValueError, random.integers, low_a, high,
- endpoint=endpoint, dtype=dtype)
- assert_raises(ValueError, random.integers, low, high_a,
- endpoint=endpoint, dtype=dtype)
- assert_raises(ValueError, random.integers, low_a, high_a,
- endpoint=endpoint, dtype=dtype)
- low_o = np.array([[low]*10], dtype=object)
- high_o = np.array([high] * 10, dtype=object)
- assert_raises(ValueError, random.integers, low_o, high,
- endpoint=endpoint, dtype=dtype)
- assert_raises(ValueError, random.integers, low, high_o,
- endpoint=endpoint, dtype=dtype)
- assert_raises(ValueError, random.integers, low_o, high_o,
- endpoint=endpoint, dtype=dtype)
- def test_int64_uint64_corner_case(self, endpoint):
- # When stored in Numpy arrays, `lbnd` is casted
- # as np.int64, and `ubnd` is casted as np.uint64.
- # Checking whether `lbnd` >= `ubnd` used to be
- # done solely via direct comparison, which is incorrect
- # because when Numpy tries to compare both numbers,
- # it casts both to np.float64 because there is
- # no integer superset of np.int64 and np.uint64. However,
- # `ubnd` is too large to be represented in np.float64,
- # causing it be round down to np.iinfo(np.int64).max,
- # leading to a ValueError because `lbnd` now equals
- # the new `ubnd`.
- dt = np.int64
- tgt = np.iinfo(np.int64).max
- lbnd = np.int64(np.iinfo(np.int64).max)
- ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint)
- # None of these function calls should
- # generate a ValueError now.
- actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt)
- assert_equal(actual, tgt)
- def test_respect_dtype_singleton(self, endpoint):
- # See gh-7203
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- dt = np.bool_ if dt is bool else dt
- sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
- assert_equal(sample.dtype, dt)
- for dt in (bool, int, np.compat.long):
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- # gh-7284: Ensure that we get Python data types
- sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
- assert not hasattr(sample, 'dtype')
- assert_equal(type(sample), dt)
- def test_respect_dtype_array(self, endpoint):
- # See gh-7203
- for dt in self.itype:
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- ubnd = ubnd - 1 if endpoint else ubnd
- dt = np.bool_ if dt is bool else dt
- sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt)
- assert_equal(sample.dtype, dt)
- sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint,
- dtype=dt)
- assert_equal(sample.dtype, dt)
- def test_zero_size(self, endpoint):
- # See gh-7203
- for dt in self.itype:
- sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt)
- assert sample.shape == (3, 0, 4)
- assert sample.dtype == dt
- assert self.rfunc(0, -10, 0, endpoint=endpoint,
- dtype=dt).shape == (0,)
- assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape,
- (3, 0, 4))
- assert_equal(random.integers(0, -10, size=0).shape, (0,))
- assert_equal(random.integers(10, 10, size=0).shape, (0,))
- def test_error_byteorder(self):
- other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
- with pytest.raises(ValueError):
- random.integers(0, 200, size=10, dtype=other_byteord_dt)
- # chi2max is the maximum acceptable chi-squared value.
- @pytest.mark.slow
- @pytest.mark.parametrize('sample_size,high,dtype,chi2max',
- [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25
- (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30
- (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25
- (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25
- ])
- def test_integers_small_dtype_chisquared(self, sample_size, high,
- dtype, chi2max):
- # Regression test for gh-14774.
- samples = random.integers(high, size=sample_size, dtype=dtype)
- values, counts = np.unique(samples, return_counts=True)
- expected = sample_size / high
- chi2 = ((counts - expected)**2 / expected).sum()
- assert chi2 < chi2max
- class TestRandomDist:
- # Make sure the random distribution returns the correct value for a
- # given seed
- def setup(self):
- self.seed = 1234567890
- def test_integers(self):
- random = Generator(MT19937(self.seed))
- actual = random.integers(-99, 99, size=(3, 2))
- desired = np.array([[-80, -56], [41, 37], [-83, -16]])
- assert_array_equal(actual, desired)
- def test_integers_masked(self):
- # Test masked rejection sampling algorithm to generate array of
- # uint32 in an interval.
- random = Generator(MT19937(self.seed))
- actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32)
- desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32)
- assert_array_equal(actual, desired)
- def test_integers_closed(self):
- random = Generator(MT19937(self.seed))
- actual = random.integers(-99, 99, size=(3, 2), endpoint=True)
- desired = np.array([[-80, -56], [ 41, 38], [-83, -15]])
- assert_array_equal(actual, desired)
- def test_integers_max_int(self):
- # Tests whether integers with closed=True can generate the
- # maximum allowed Python int that can be converted
- # into a C long. Previous implementations of this
- # method have thrown an OverflowError when attempting
- # to generate this integer.
- actual = random.integers(np.iinfo('l').max, np.iinfo('l').max,
- endpoint=True)
- desired = np.iinfo('l').max
- assert_equal(actual, desired)
- def test_random(self):
- random = Generator(MT19937(self.seed))
- actual = random.random((3, 2))
- desired = np.array([[0.096999199829214, 0.707517457682192],
- [0.084364834598269, 0.767731206553125],
- [0.665069021359413, 0.715487190596693]])
- assert_array_almost_equal(actual, desired, decimal=15)
- random = Generator(MT19937(self.seed))
- actual = random.random()
- assert_array_almost_equal(actual, desired[0, 0], decimal=15)
- def test_random_float(self):
- random = Generator(MT19937(self.seed))
- actual = random.random((3, 2))
- desired = np.array([[0.0969992 , 0.70751746],
- [0.08436483, 0.76773121],
- [0.66506902, 0.71548719]])
- assert_array_almost_equal(actual, desired, decimal=7)
- def test_random_float_scalar(self):
- random = Generator(MT19937(self.seed))
- actual = random.random(dtype=np.float32)
- desired = 0.0969992
- assert_array_almost_equal(actual, desired, decimal=7)
- def test_random_unsupported_type(self):
- assert_raises(TypeError, random.random, dtype='int32')
- def test_choice_uniform_replace(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice(4, 4)
- desired = np.array([0, 0, 2, 2], dtype=np.int64)
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_replace(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
- desired = np.array([0, 1, 0, 1], dtype=np.int64)
- assert_array_equal(actual, desired)
- def test_choice_uniform_noreplace(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice(4, 3, replace=False)
- desired = np.array([2, 0, 3], dtype=np.int64)
- assert_array_equal(actual, desired)
- actual = random.choice(4, 4, replace=False, shuffle=False)
- desired = np.arange(4, dtype=np.int64)
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_noreplace(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
- desired = np.array([0, 2, 3], dtype=np.int64)
- assert_array_equal(actual, desired)
- def test_choice_noninteger(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice(['a', 'b', 'c', 'd'], 4)
- desired = np.array(['a', 'a', 'c', 'c'])
- assert_array_equal(actual, desired)
- def test_choice_multidimensional_default_axis(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3)
- desired = np.array([[0, 1], [0, 1], [4, 5]])
- assert_array_equal(actual, desired)
- def test_choice_multidimensional_custom_axis(self):
- random = Generator(MT19937(self.seed))
- actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1)
- desired = np.array([[0], [2], [4], [6]])
- assert_array_equal(actual, desired)
- def test_choice_exceptions(self):
- sample = random.choice
- assert_raises(ValueError, sample, -1, 3)
- assert_raises(ValueError, sample, 3., 3)
- assert_raises(ValueError, sample, [], 3)
- assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
- p=[[0.25, 0.25], [0.25, 0.25]])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
- assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
- assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
- # gh-13087
- assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], 2,
- replace=False, p=[1, 0, 0])
- def test_choice_return_shape(self):
- p = [0.1, 0.9]
- # Check scalar
- assert_(np.isscalar(random.choice(2, replace=True)))
- assert_(np.isscalar(random.choice(2, replace=False)))
- assert_(np.isscalar(random.choice(2, replace=True, p=p)))
- assert_(np.isscalar(random.choice(2, replace=False, p=p)))
- assert_(np.isscalar(random.choice([1, 2], replace=True)))
- assert_(random.choice([None], replace=True) is None)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(random.choice(arr, replace=True) is a)
- # Check 0-d array
- s = tuple()
- assert_(not np.isscalar(random.choice(2, s, replace=True)))
- assert_(not np.isscalar(random.choice(2, s, replace=False)))
- assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
- assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
- assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
- assert_(random.choice([None], s, replace=True).ndim == 0)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(random.choice(arr, s, replace=True).item() is a)
- # Check multi dimensional array
- s = (2, 3)
- p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
- assert_equal(random.choice(6, s, replace=True).shape, s)
- assert_equal(random.choice(6, s, replace=False).shape, s)
- assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
- assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
- assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
- # Check zero-size
- assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
- assert_equal(random.integers(0, -10, size=0).shape, (0,))
- assert_equal(random.integers(10, 10, size=0).shape, (0,))
- assert_equal(random.choice(0, size=0).shape, (0,))
- assert_equal(random.choice([], size=(0,)).shape, (0,))
- assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
- (3, 0, 4))
- assert_raises(ValueError, random.choice, [], 10)
- def test_choice_nan_probabilities(self):
- a = np.array([42, 1, 2])
- p = [None, None, None]
- assert_raises(ValueError, random.choice, a, p=p)
- def test_choice_p_non_contiguous(self):
- p = np.ones(10) / 5
- p[1::2] = 3.0
- random = Generator(MT19937(self.seed))
- non_contig = random.choice(5, 3, p=p[::2])
- random = Generator(MT19937(self.seed))
- contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
- assert_array_equal(non_contig, contig)
- def test_choice_return_type(self):
- # gh 9867
- p = np.ones(4) / 4.
- actual = random.choice(4, 2)
- assert actual.dtype == np.int64
- actual = random.choice(4, 2, replace=False)
- assert actual.dtype == np.int64
- actual = random.choice(4, 2, p=p)
- assert actual.dtype == np.int64
- actual = random.choice(4, 2, p=p, replace=False)
- assert actual.dtype == np.int64
- def test_choice_large_sample(self):
- choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222'
- random = Generator(MT19937(self.seed))
- actual = random.choice(10000, 5000, replace=False)
- if sys.byteorder != 'little':
- actual = actual.byteswap()
- res = hashlib.sha256(actual.view(np.int8)).hexdigest()
- assert_(choice_hash == res)
- def test_bytes(self):
- random = Generator(MT19937(self.seed))
- actual = random.bytes(10)
- desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd'
- assert_equal(actual, desired)
- def test_shuffle(self):
- # Test lists, arrays (of various dtypes), and multidimensional versions
- # of both, c-contiguous or not:
- for conv in [lambda x: np.array([]),
- lambda x: x,
- lambda x: np.asarray(x).astype(np.int8),
- lambda x: np.asarray(x).astype(np.float32),
- lambda x: np.asarray(x).astype(np.complex64),
- lambda x: np.asarray(x).astype(object),
- lambda x: [(i, i) for i in x],
- lambda x: np.asarray([[i, i] for i in x]),
- lambda x: np.vstack([x, x]).T,
- # gh-11442
- lambda x: (np.asarray([(i, i) for i in x],
- [("a", int), ("b", int)])
- .view(np.recarray)),
- # gh-4270
- lambda x: np.asarray([(i, i) for i in x],
- [("a", object, (1,)),
- ("b", np.int32, (1,))])]:
- random = Generator(MT19937(self.seed))
- alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
- random.shuffle(alist)
- actual = alist
- desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7])
- assert_array_equal(actual, desired)
- def test_shuffle_custom_axis(self):
- random = Generator(MT19937(self.seed))
- actual = np.arange(16).reshape((4, 4))
- random.shuffle(actual, axis=1)
- desired = np.array([[ 0, 3, 1, 2],
- [ 4, 7, 5, 6],
- [ 8, 11, 9, 10],
- [12, 15, 13, 14]])
- assert_array_equal(actual, desired)
- random = Generator(MT19937(self.seed))
- actual = np.arange(16).reshape((4, 4))
- random.shuffle(actual, axis=-1)
- assert_array_equal(actual, desired)
- def test_shuffle_custom_axis_empty(self):
- random = Generator(MT19937(self.seed))
- desired = np.array([]).reshape((0, 6))
- for axis in (0, 1):
- actual = np.array([]).reshape((0, 6))
- random.shuffle(actual, axis=axis)
- assert_array_equal(actual, desired)
- def test_shuffle_axis_nonsquare(self):
- y1 = np.arange(20).reshape(2, 10)
- y2 = y1.copy()
- random = Generator(MT19937(self.seed))
- random.shuffle(y1, axis=1)
- random = Generator(MT19937(self.seed))
- random.shuffle(y2.T)
- assert_array_equal(y1, y2)
- def test_shuffle_masked(self):
- # gh-3263
- a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
- b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
- a_orig = a.copy()
- b_orig = b.copy()
- for i in range(50):
- random.shuffle(a)
- assert_equal(
- sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
- random.shuffle(b)
- assert_equal(
- sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
- def test_shuffle_exceptions(self):
- random = Generator(MT19937(self.seed))
- arr = np.arange(10)
- assert_raises(np.AxisError, random.shuffle, arr, 1)
- arr = np.arange(9).reshape((3, 3))
- assert_raises(np.AxisError, random.shuffle, arr, 3)
- assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None))
- arr = [[1, 2, 3], [4, 5, 6]]
- assert_raises(NotImplementedError, random.shuffle, arr, 1)
- arr = np.array(3)
- assert_raises(TypeError, random.shuffle, arr)
- arr = np.ones((3, 2))
- assert_raises(np.AxisError, random.shuffle, arr, 2)
- def test_permutation(self):
- random = Generator(MT19937(self.seed))
- alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
- actual = random.permutation(alist)
- desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7]
- assert_array_equal(actual, desired)
- random = Generator(MT19937(self.seed))
- arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
- actual = random.permutation(arr_2d)
- assert_array_equal(actual, np.atleast_2d(desired).T)
- bad_x_str = "abcd"
- assert_raises(np.AxisError, random.permutation, bad_x_str)
- bad_x_float = 1.2
- assert_raises(np.AxisError, random.permutation, bad_x_float)
- random = Generator(MT19937(self.seed))
- integer_val = 10
- desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6]
- actual = random.permutation(integer_val)
- assert_array_equal(actual, desired)
- def test_permutation_custom_axis(self):
- a = np.arange(16).reshape((4, 4))
- desired = np.array([[ 0, 3, 1, 2],
- [ 4, 7, 5, 6],
- [ 8, 11, 9, 10],
- [12, 15, 13, 14]])
- random = Generator(MT19937(self.seed))
- actual = random.permutation(a, axis=1)
- assert_array_equal(actual, desired)
- random = Generator(MT19937(self.seed))
- actual = random.permutation(a, axis=-1)
- assert_array_equal(actual, desired)
- def test_permutation_exceptions(self):
- random = Generator(MT19937(self.seed))
- arr = np.arange(10)
- assert_raises(np.AxisError, random.permutation, arr, 1)
- arr = np.arange(9).reshape((3, 3))
- assert_raises(np.AxisError, random.permutation, arr, 3)
- assert_raises(TypeError, random.permutation, arr, slice(1, 2, None))
- @pytest.mark.parametrize("dtype", [int, object])
- @pytest.mark.parametrize("axis, expected",
- [(None, np.array([[3, 7, 0, 9, 10, 11],
- [8, 4, 2, 5, 1, 6]])),
- (0, np.array([[6, 1, 2, 9, 10, 11],
- [0, 7, 8, 3, 4, 5]])),
- (1, np.array([[ 5, 3, 4, 0, 2, 1],
- [11, 9, 10, 6, 8, 7]]))])
- def test_permuted(self, dtype, axis, expected):
- random = Generator(MT19937(self.seed))
- x = np.arange(12).reshape(2, 6).astype(dtype)
- random.permuted(x, axis=axis, out=x)
- assert_array_equal(x, expected)
- random = Generator(MT19937(self.seed))
- x = np.arange(12).reshape(2, 6).astype(dtype)
- y = random.permuted(x, axis=axis)
- assert y.dtype == dtype
- assert_array_equal(y, expected)
- def test_permuted_with_strides(self):
- random = Generator(MT19937(self.seed))
- x0 = np.arange(22).reshape(2, 11)
- x1 = x0.copy()
- x = x0[:, ::3]
- y = random.permuted(x, axis=1, out=x)
- expected = np.array([[0, 9, 3, 6],
- [14, 20, 11, 17]])
- assert_array_equal(y, expected)
- x1[:, ::3] = expected
- # Verify that the original x0 was modified in-place as expected.
- assert_array_equal(x1, x0)
- def test_permuted_empty(self):
- y = random.permuted([])
- assert_array_equal(y, [])
- @pytest.mark.parametrize('outshape', [(2, 3), 5])
- def test_permuted_out_with_wrong_shape(self, outshape):
- a = np.array([1, 2, 3])
- out = np.zeros(outshape, dtype=a.dtype)
- with pytest.raises(ValueError, match='same shape'):
- random.permuted(a, out=out)
- def test_permuted_out_with_wrong_type(self):
- out = np.zeros((3, 5), dtype=np.int32)
- x = np.ones((3, 5))
- with pytest.raises(TypeError, match='Cannot cast'):
- random.permuted(x, axis=1, out=out)
- def test_beta(self):
- random = Generator(MT19937(self.seed))
- actual = random.beta(.1, .9, size=(3, 2))
- desired = np.array(
- [[1.083029353267698e-10, 2.449965303168024e-11],
- [2.397085162969853e-02, 3.590779671820755e-08],
- [2.830254190078299e-04, 1.744709918330393e-01]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_binomial(self):
- random = Generator(MT19937(self.seed))
- actual = random.binomial(100.123, .456, size=(3, 2))
- desired = np.array([[42, 41],
- [42, 48],
- [44, 50]])
- assert_array_equal(actual, desired)
- random = Generator(MT19937(self.seed))
- actual = random.binomial(100.123, .456)
- desired = 42
- assert_array_equal(actual, desired)
- def test_chisquare(self):
- random = Generator(MT19937(self.seed))
- actual = random.chisquare(50, size=(3, 2))
- desired = np.array([[32.9850547060149, 39.0219480493301],
- [56.2006134779419, 57.3474165711485],
- [55.4243733880198, 55.4209797925213]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_dirichlet(self):
- random = Generator(MT19937(self.seed))
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
- actual = random.dirichlet(alpha, size=(3, 2))
- desired = np.array([[[0.5439892869558927, 0.45601071304410745],
- [0.5588917345860708, 0.4411082654139292 ]],
- [[0.5632074165063435, 0.43679258349365657],
- [0.54862581112627, 0.45137418887373015]],
- [[0.49961831357047226, 0.5003816864295278 ],
- [0.52374806183482, 0.47625193816517997]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- bad_alpha = np.array([5.4e-01, -1.0e-16])
- assert_raises(ValueError, random.dirichlet, bad_alpha)
- random = Generator(MT19937(self.seed))
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
- actual = random.dirichlet(alpha)
- assert_array_almost_equal(actual, desired[0, 0], decimal=15)
- def test_dirichlet_size(self):
- # gh-3173
- p = np.array([51.72840233779265162, 39.74494232180943953])
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
- assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
- assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
- assert_raises(TypeError, random.dirichlet, p, float(1))
- def test_dirichlet_bad_alpha(self):
- # gh-2089
- alpha = np.array([5.4e-01, -1.0e-16])
- assert_raises(ValueError, random.dirichlet, alpha)
- # gh-15876
- assert_raises(ValueError, random.dirichlet, [[5, 1]])
- assert_raises(ValueError, random.dirichlet, [[5], [1]])
- assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
- assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
- def test_dirichlet_alpha_non_contiguous(self):
- a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
- alpha = a[::2]
- random = Generator(MT19937(self.seed))
- non_contig = random.dirichlet(alpha, size=(3, 2))
- random = Generator(MT19937(self.seed))
- contig = random.dirichlet(np.ascontiguousarray(alpha),
- size=(3, 2))
- assert_array_almost_equal(non_contig, contig)
- def test_dirichlet_small_alpha(self):
- eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc.
- alpha = eps * np.array([1., 1.0e-3])
- random = Generator(MT19937(self.seed))
- actual = random.dirichlet(alpha, size=(3, 2))
- expected = np.array([
- [[1., 0.],
- [1., 0.]],
- [[1., 0.],
- [1., 0.]],
- [[1., 0.],
- [1., 0.]]
- ])
- assert_array_almost_equal(actual, expected, decimal=15)
- @pytest.mark.slow
- def test_dirichlet_moderately_small_alpha(self):
- # Use alpha.max() < 0.1 to trigger stick breaking code path
- alpha = np.array([0.02, 0.04, 0.03])
- exact_mean = alpha / alpha.sum()
- random = Generator(MT19937(self.seed))
- sample = random.dirichlet(alpha, size=20000000)
- sample_mean = sample.mean(axis=0)
- assert_allclose(sample_mean, exact_mean, rtol=1e-3)
- def test_exponential(self):
- random = Generator(MT19937(self.seed))
- actual = random.exponential(1.1234, size=(3, 2))
- desired = np.array([[0.098845481066258, 1.560752510746964],
- [0.075730916041636, 1.769098974710777],
- [1.488602544592235, 2.49684815275751 ]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_exponential_0(self):
- assert_equal(random.exponential(scale=0), 0)
- assert_raises(ValueError, random.exponential, scale=-0.)
- def test_f(self):
- random = Generator(MT19937(self.seed))
- actual = random.f(12, 77, size=(3, 2))
- desired = np.array([[0.461720027077085, 1.100441958872451],
- [1.100337455217484, 0.91421736740018 ],
- [0.500811891303113, 0.826802454552058]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gamma(self):
- random = Generator(MT19937(self.seed))
- actual = random.gamma(5, 3, size=(3, 2))
- desired = np.array([[ 5.03850858902096, 7.9228656732049 ],
- [18.73983605132985, 19.57961681699238],
- [18.17897755150825, 18.17653912505234]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_gamma_0(self):
- assert_equal(random.gamma(shape=0, scale=0), 0)
- assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
- def test_geometric(self):
- random = Generator(MT19937(self.seed))
- actual = random.geometric(.123456789, size=(3, 2))
- desired = np.array([[ 1, 10],
- [ 1, 12],
- [ 9, 10]])
- assert_array_equal(actual, desired)
- def test_geometric_exceptions(self):
- assert_raises(ValueError, random.geometric, 1.1)
- assert_raises(ValueError, random.geometric, [1.1] * 10)
- assert_raises(ValueError, random.geometric, -0.1)
- assert_raises(ValueError, random.geometric, [-0.1] * 10)
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, random.geometric, np.nan)
- assert_raises(ValueError, random.geometric, [np.nan] * 10)
- def test_gumbel(self):
- random = Generator(MT19937(self.seed))
- actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[ 4.688397515056245, -0.289514845417841],
- [ 4.981176042584683, -0.633224272589149],
- [-0.055915275687488, -0.333962478257953]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gumbel_0(self):
- assert_equal(random.gumbel(scale=0), 0)
- assert_raises(ValueError, random.gumbel, scale=-0.)
- def test_hypergeometric(self):
- random = Generator(MT19937(self.seed))
- actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
- desired = np.array([[ 9, 9],
- [ 9, 9],
- [10, 9]])
- assert_array_equal(actual, desired)
- # Test nbad = 0
- actual = random.hypergeometric(5, 0, 3, size=4)
- desired = np.array([3, 3, 3, 3])
- assert_array_equal(actual, desired)
- actual = random.hypergeometric(15, 0, 12, size=4)
- desired = np.array([12, 12, 12, 12])
- assert_array_equal(actual, desired)
- # Test ngood = 0
- actual = random.hypergeometric(0, 5, 3, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- actual = random.hypergeometric(0, 15, 12, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- def test_laplace(self):
- random = Generator(MT19937(self.seed))
- actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[-3.156353949272393, 1.195863024830054],
- [-3.435458081645966, 1.656882398925444],
- [ 0.924824032467446, 1.251116432209336]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_laplace_0(self):
- assert_equal(random.laplace(scale=0), 0)
- assert_raises(ValueError, random.laplace, scale=-0.)
- def test_logistic(self):
- random = Generator(MT19937(self.seed))
- actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[-4.338584631510999, 1.890171436749954],
- [-4.64547787337966 , 2.514545562919217],
- [ 1.495389489198666, 1.967827627577474]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_lognormal(self):
- random = Generator(MT19937(self.seed))
- actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
- desired = np.array([[ 0.0268252166335, 13.9534486483053],
- [ 0.1204014788936, 2.2422077497792],
- [ 4.2484199496128, 12.0093343977523]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_lognormal_0(self):
- assert_equal(random.lognormal(sigma=0), 1)
- assert_raises(ValueError, random.lognormal, sigma=-0.)
- def test_logseries(self):
- random = Generator(MT19937(self.seed))
- actual = random.logseries(p=.923456789, size=(3, 2))
- desired = np.array([[14, 17],
- [3, 18],
- [5, 1]])
- assert_array_equal(actual, desired)
- def test_logseries_exceptions(self):
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, random.logseries, np.nan)
- assert_raises(ValueError, random.logseries, [np.nan] * 10)
- def test_multinomial(self):
- random = Generator(MT19937(self.seed))
- actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
- desired = np.array([[[1, 5, 1, 6, 4, 3],
- [4, 2, 6, 2, 4, 2]],
- [[5, 3, 2, 6, 3, 1],
- [4, 4, 0, 2, 3, 7]],
- [[6, 3, 1, 5, 3, 2],
- [5, 5, 3, 1, 2, 4]]])
- assert_array_equal(actual, desired)
- @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
- def test_multivariate_normal(self, method):
- random = Generator(MT19937(self.seed))
- mean = (.123456789, 10)
- cov = [[1, 0], [0, 1]]
- size = (3, 2)
- actual = random.multivariate_normal(mean, cov, size, method=method)
- desired = np.array([[[-1.747478062846581, 11.25613495182354 ],
- [-0.9967333370066214, 10.342002097029821 ]],
- [[ 0.7850019631242964, 11.181113712443013 ],
- [ 0.8901349653255224, 8.873825399642492 ]],
- [[ 0.7130260107430003, 9.551628690083056 ],
- [ 0.7127098726541128, 11.991709234143173 ]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check for default size, was raising deprecation warning
- actual = random.multivariate_normal(mean, cov, method=method)
- desired = np.array([0.233278563284287, 9.424140804347195])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check that non symmetric covariance input raises exception when
- # check_valid='raises' if using default svd method.
- mean = [0, 0]
- cov = [[1, 2], [1, 2]]
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='raise')
- # Check that non positive-semidefinite covariance warns with
- # RuntimeWarning
- cov = [[1, 2], [2, 1]]
- assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
- assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov,
- method='eigh')
- assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
- method='cholesky')
- # and that it doesn't warn with RuntimeWarning check_valid='ignore'
- assert_no_warnings(random.multivariate_normal, mean, cov,
- check_valid='ignore')
- # and that it raises with RuntimeWarning check_valid='raises'
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='raise')
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='raise', method='eigh')
- # check degenerate samples from singular covariance matrix
- cov = [[1, 1], [1, 1]]
- if method in ('svd', 'eigh'):
- samples = random.multivariate_normal(mean, cov, size=(3, 2),
- method=method)
- assert_array_almost_equal(samples[..., 0], samples[..., 1],
- decimal=6)
- else:
- assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
- method='cholesky')
- cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
- with suppress_warnings() as sup:
- random.multivariate_normal(mean, cov, method=method)
- w = sup.record(RuntimeWarning)
- assert len(w) == 0
- mu = np.zeros(2)
- cov = np.eye(2)
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='other')
- assert_raises(ValueError, random.multivariate_normal,
- np.zeros((2, 1, 1)), cov)
- assert_raises(ValueError, random.multivariate_normal,
- mu, np.empty((3, 2)))
- assert_raises(ValueError, random.multivariate_normal,
- mu, np.eye(3))
- @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
- def test_multivariate_normal_basic_stats(self, method):
- random = Generator(MT19937(self.seed))
- n_s = 1000
- mean = np.array([1, 2])
- cov = np.array([[2, 1], [1, 2]])
- s = random.multivariate_normal(mean, cov, size=(n_s,), method=method)
- s_center = s - mean
- cov_emp = (s_center.T @ s_center) / (n_s - 1)
- # these are pretty loose and are only designed to detect major errors
- assert np.all(np.abs(s_center.mean(-2)) < 0.1)
- assert np.all(np.abs(cov_emp - cov) < 0.2)
- def test_negative_binomial(self):
- random = Generator(MT19937(self.seed))
- actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
- desired = np.array([[543, 727],
- [775, 760],
- [600, 674]])
- assert_array_equal(actual, desired)
- def test_negative_binomial_exceptions(self):
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, random.negative_binomial, 100, np.nan)
- assert_raises(ValueError, random.negative_binomial, 100,
- [np.nan] * 10)
- def test_negative_binomial_p0_exception(self):
- # Verify that p=0 raises an exception.
- with assert_raises(ValueError):
- x = random.negative_binomial(1, 0)
- def test_noncentral_chisquare(self):
- random = Generator(MT19937(self.seed))
- actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
- desired = np.array([[ 1.70561552362133, 15.97378184942111],
- [13.71483425173724, 20.17859633310629],
- [11.3615477156643 , 3.67891108738029]])
- assert_array_almost_equal(actual, desired, decimal=14)
- actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
- desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04],
- [1.14554372041263e+00, 1.38187755933435e-03],
- [1.90659181905387e+00, 1.21772577941822e+00]])
- assert_array_almost_equal(actual, desired, decimal=14)
- random = Generator(MT19937(self.seed))
- actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
- desired = np.array([[0.82947954590419, 1.80139670767078],
- [6.58720057417794, 7.00491463609814],
- [6.31101879073157, 6.30982307753005]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_noncentral_f(self):
- random = Generator(MT19937(self.seed))
- actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
- size=(3, 2))
- desired = np.array([[0.060310671139 , 0.23866058175939],
- [0.86860246709073, 0.2668510459738 ],
- [0.23375780078364, 1.88922102885943]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_noncentral_f_nan(self):
- random = Generator(MT19937(self.seed))
- actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
- assert np.isnan(actual)
- def test_normal(self):
- random = Generator(MT19937(self.seed))
- actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[-3.618412914693162, 2.635726692647081],
- [-2.116923463013243, 0.807460983059643],
- [ 1.446547137248593, 2.485684213886024]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_normal_0(self):
- assert_equal(random.normal(scale=0), 0)
- assert_raises(ValueError, random.normal, scale=-0.)
- def test_pareto(self):
- random = Generator(MT19937(self.seed))
- actual = random.pareto(a=.123456789, size=(3, 2))
- desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04],
- [7.2640150889064703e-01, 3.4650454783825594e+05],
- [4.5852344481994740e+04, 6.5851383009539105e+07]])
- # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
- # matrix differs by 24 nulps. Discussion:
- # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
- # Consensus is that this is probably some gcc quirk that affects
- # rounding but not in any important way, so we just use a looser
- # tolerance on this test:
- np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
- def test_poisson(self):
- random = Generator(MT19937(self.seed))
- actual = random.poisson(lam=.123456789, size=(3, 2))
- desired = np.array([[0, 0],
- [0, 0],
- [0, 0]])
- assert_array_equal(actual, desired)
- def test_poisson_exceptions(self):
- lambig = np.iinfo('int64').max
- lamneg = -1
- assert_raises(ValueError, random.poisson, lamneg)
- assert_raises(ValueError, random.poisson, [lamneg] * 10)
- assert_raises(ValueError, random.poisson, lambig)
- assert_raises(ValueError, random.poisson, [lambig] * 10)
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, random.poisson, np.nan)
- assert_raises(ValueError, random.poisson, [np.nan] * 10)
- def test_power(self):
- random = Generator(MT19937(self.seed))
- actual = random.power(a=.123456789, size=(3, 2))
- desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02],
- [2.482442984543471e-10, 1.527108843266079e-01],
- [8.188283434244285e-02, 3.950547209346948e-01]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_rayleigh(self):
- random = Generator(MT19937(self.seed))
- actual = random.rayleigh(scale=10, size=(3, 2))
- desired = np.array([[ 4.51734079831581, 15.6802442485758 ],
- [ 4.19850651287094, 17.08718809823704],
- [14.7907457708776 , 15.85545333419775]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_rayleigh_0(self):
- assert_equal(random.rayleigh(scale=0), 0)
- assert_raises(ValueError, random.rayleigh, scale=-0.)
- def test_standard_cauchy(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_cauchy(size=(3, 2))
- desired = np.array([[-1.489437778266206, -3.275389641569784],
- [ 0.560102864910406, -0.680780916282552],
- [-1.314912905226277, 0.295852965660225]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_exponential(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_exponential(size=(3, 2), method='inv')
- desired = np.array([[0.102031839440643, 1.229350298474972],
- [0.088137284693098, 1.459859985522667],
- [1.093830802293668, 1.256977002164613]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_expoential_type_error(self):
- assert_raises(TypeError, random.standard_exponential, dtype=np.int32)
- def test_standard_gamma(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_gamma(shape=3, size=(3, 2))
- desired = np.array([[0.62970724056362, 1.22379851271008],
- [3.899412530884 , 4.12479964250139],
- [3.74994102464584, 3.74929307690815]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_standard_gammma_scalar_float(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_gamma(3, dtype=np.float32)
- desired = 2.9242148399353027
- assert_array_almost_equal(actual, desired, decimal=6)
- def test_standard_gamma_float(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_gamma(shape=3, size=(3, 2))
- desired = np.array([[0.62971, 1.2238 ],
- [3.89941, 4.1248 ],
- [3.74994, 3.74929]])
- assert_array_almost_equal(actual, desired, decimal=5)
- def test_standard_gammma_float_out(self):
- actual = np.zeros((3, 2), dtype=np.float32)
- random = Generator(MT19937(self.seed))
- random.standard_gamma(10.0, out=actual, dtype=np.float32)
- desired = np.array([[10.14987, 7.87012],
- [ 9.46284, 12.56832],
- [13.82495, 7.81533]], dtype=np.float32)
- assert_array_almost_equal(actual, desired, decimal=5)
- random = Generator(MT19937(self.seed))
- random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32)
- assert_array_almost_equal(actual, desired, decimal=5)
- def test_standard_gamma_unknown_type(self):
- assert_raises(TypeError, random.standard_gamma, 1.,
- dtype='int32')
- def test_out_size_mismatch(self):
- out = np.zeros(10)
- assert_raises(ValueError, random.standard_gamma, 10.0, size=20,
- out=out)
- assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1),
- out=out)
- def test_standard_gamma_0(self):
- assert_equal(random.standard_gamma(shape=0), 0)
- assert_raises(ValueError, random.standard_gamma, shape=-0.)
- def test_standard_normal(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_normal(size=(3, 2))
- desired = np.array([[-1.870934851846581, 1.25613495182354 ],
- [-1.120190126006621, 0.342002097029821],
- [ 0.661545174124296, 1.181113712443012]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_normal_unsupported_type(self):
- assert_raises(TypeError, random.standard_normal, dtype=np.int32)
- def test_standard_t(self):
- random = Generator(MT19937(self.seed))
- actual = random.standard_t(df=10, size=(3, 2))
- desired = np.array([[-1.484666193042647, 0.30597891831161 ],
- [ 1.056684299648085, -0.407312602088507],
- [ 0.130704414281157, -2.038053410490321]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_triangular(self):
- random = Generator(MT19937(self.seed))
- actual = random.triangular(left=5.12, mode=10.23, right=20.34,
- size=(3, 2))
- desired = np.array([[ 7.86664070590917, 13.6313848513185 ],
- [ 7.68152445215983, 14.36169131136546],
- [13.16105603911429, 13.72341621856971]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_uniform(self):
- random = Generator(MT19937(self.seed))
- actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
- desired = np.array([[2.13306255040998 , 7.816987531021207],
- [2.015436610109887, 8.377577533009589],
- [7.421792588856135, 7.891185744455209]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_uniform_range_bounds(self):
- fmin = np.finfo('float').min
- fmax = np.finfo('float').max
- func = random.uniform
- assert_raises(OverflowError, func, -np.inf, 0)
- assert_raises(OverflowError, func, 0, np.inf)
- assert_raises(OverflowError, func, fmin, fmax)
- assert_raises(OverflowError, func, [-np.inf], [0])
- assert_raises(OverflowError, func, [0], [np.inf])
- # (fmax / 1e17) - fmin is within range, so this should not throw
- # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
- # DBL_MAX by increasing fmin a bit
- random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
- def test_scalar_exception_propagation(self):
- # Tests that exceptions are correctly propagated in distributions
- # when called with objects that throw exceptions when converted to
- # scalars.
- #
- # Regression test for gh: 8865
- class ThrowingFloat(np.ndarray):
- def __float__(self):
- raise TypeError
- throwing_float = np.array(1.0).view(ThrowingFloat)
- assert_raises(TypeError, random.uniform, throwing_float,
- throwing_float)
- class ThrowingInteger(np.ndarray):
- def __int__(self):
- raise TypeError
- throwing_int = np.array(1).view(ThrowingInteger)
- assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
- def test_vonmises(self):
- random = Generator(MT19937(self.seed))
- actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
- desired = np.array([[ 1.107972248690106, 2.841536476232361],
- [ 1.832602376042457, 1.945511926976032],
- [-0.260147475776542, 2.058047492231698]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_vonmises_small(self):
- # check infinite loop, gh-4720
- random = Generator(MT19937(self.seed))
- r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
- assert_(np.isfinite(r).all())
- def test_vonmises_nan(self):
- random = Generator(MT19937(self.seed))
- r = random.vonmises(mu=0., kappa=np.nan)
- assert_(np.isnan(r))
- def test_wald(self):
- random = Generator(MT19937(self.seed))
- actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
- desired = np.array([[0.26871721804551, 3.2233942732115 ],
- [2.20328374987066, 2.40958405189353],
- [2.07093587449261, 0.73073890064369]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_weibull(self):
- random = Generator(MT19937(self.seed))
- actual = random.weibull(a=1.23, size=(3, 2))
- desired = np.array([[0.138613914769468, 1.306463419753191],
- [0.111623365934763, 1.446570494646721],
- [1.257145775276011, 1.914247725027957]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_weibull_0(self):
- random = Generator(MT19937(self.seed))
- assert_equal(random.weibull(a=0, size=12), np.zeros(12))
- assert_raises(ValueError, random.weibull, a=-0.)
- def test_zipf(self):
- random = Generator(MT19937(self.seed))
- actual = random.zipf(a=1.23, size=(3, 2))
- desired = np.array([[ 1, 1],
- [ 10, 867],
- [354, 2]])
- assert_array_equal(actual, desired)
- class TestBroadcast:
- # tests that functions that broadcast behave
- # correctly when presented with non-scalar arguments
- def setup(self):
- self.seed = 123456789
- def test_uniform(self):
- random = Generator(MT19937(self.seed))
- low = [0]
- high = [1]
- uniform = random.uniform
- desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095])
- random = Generator(MT19937(self.seed))
- actual = random.uniform(low * 3, high)
- assert_array_almost_equal(actual, desired, decimal=14)
- random = Generator(MT19937(self.seed))
- actual = random.uniform(low, high * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_normal(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- random = Generator(MT19937(self.seed))
- desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097])
- random = Generator(MT19937(self.seed))
- actual = random.normal(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.normal, loc * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- normal = random.normal
- actual = normal(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, normal, loc, bad_scale * 3)
- def test_beta(self):
- a = [1]
- b = [2]
- bad_a = [-1]
- bad_b = [-2]
- desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455])
- random = Generator(MT19937(self.seed))
- beta = random.beta
- actual = beta(a * 3, b)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, beta, bad_a * 3, b)
- assert_raises(ValueError, beta, a * 3, bad_b)
- random = Generator(MT19937(self.seed))
- actual = random.beta(a, b * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_exponential(self):
- scale = [1]
- bad_scale = [-1]
- desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
- random = Generator(MT19937(self.seed))
- actual = random.exponential(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.exponential, bad_scale * 3)
- def test_standard_gamma(self):
- shape = [1]
- bad_shape = [-1]
- desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
- random = Generator(MT19937(self.seed))
- std_gamma = random.standard_gamma
- actual = std_gamma(shape * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, std_gamma, bad_shape * 3)
- def test_gamma(self):
- shape = [1]
- scale = [2]
- bad_shape = [-1]
- bad_scale = [-2]
- desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258])
- random = Generator(MT19937(self.seed))
- gamma = random.gamma
- actual = gamma(shape * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape * 3, scale)
- assert_raises(ValueError, gamma, shape * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- gamma = random.gamma
- actual = gamma(shape, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape, scale * 3)
- assert_raises(ValueError, gamma, shape, bad_scale * 3)
- def test_f(self):
- dfnum = [1]
- dfden = [2]
- bad_dfnum = [-1]
- bad_dfden = [-2]
- desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763])
- random = Generator(MT19937(self.seed))
- f = random.f
- actual = f(dfnum * 3, dfden)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum * 3, dfden)
- assert_raises(ValueError, f, dfnum * 3, bad_dfden)
- random = Generator(MT19937(self.seed))
- f = random.f
- actual = f(dfnum, dfden * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum, dfden * 3)
- assert_raises(ValueError, f, dfnum, bad_dfden * 3)
- def test_noncentral_f(self):
- dfnum = [2]
- dfden = [3]
- nonc = [4]
- bad_dfnum = [0]
- bad_dfden = [-1]
- bad_nonc = [-2]
- desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629])
- random = Generator(MT19937(self.seed))
- nonc_f = random.noncentral_f
- actual = nonc_f(dfnum * 3, dfden, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
- assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
- random = Generator(MT19937(self.seed))
- nonc_f = random.noncentral_f
- actual = nonc_f(dfnum, dfden * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
- random = Generator(MT19937(self.seed))
- nonc_f = random.noncentral_f
- actual = nonc_f(dfnum, dfden, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
- def test_noncentral_f_small_df(self):
- random = Generator(MT19937(self.seed))
- desired = np.array([0.04714867120827, 0.1239390327694])
- actual = random.noncentral_f(0.9, 0.9, 2, size=2)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_chisquare(self):
- df = [1]
- bad_df = [-1]
- desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589])
- random = Generator(MT19937(self.seed))
- actual = random.chisquare(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.chisquare, bad_df * 3)
- def test_noncentral_chisquare(self):
- df = [1]
- nonc = [2]
- bad_df = [-1]
- bad_nonc = [-2]
- desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399])
- random = Generator(MT19937(self.seed))
- nonc_chi = random.noncentral_chisquare
- actual = nonc_chi(df * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
- assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
- random = Generator(MT19937(self.seed))
- nonc_chi = random.noncentral_chisquare
- actual = nonc_chi(df, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
- assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
- def test_standard_t(self):
- df = [1]
- bad_df = [-1]
- desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983])
- random = Generator(MT19937(self.seed))
- actual = random.standard_t(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.standard_t, bad_df * 3)
- def test_vonmises(self):
- mu = [2]
- kappa = [1]
- bad_kappa = [-1]
- desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326])
- random = Generator(MT19937(self.seed))
- actual = random.vonmises(mu * 3, kappa)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa)
- random = Generator(MT19937(self.seed))
- actual = random.vonmises(mu, kappa * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3)
- def test_pareto(self):
- a = [1]
- bad_a = [-1]
- desired = np.array([0.95905052946317, 0.2383810889437 , 1.04988745750013])
- random = Generator(MT19937(self.seed))
- actual = random.pareto(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.pareto, bad_a * 3)
- def test_weibull(self):
- a = [1]
- bad_a = [-1]
- desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
- random = Generator(MT19937(self.seed))
- actual = random.weibull(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.weibull, bad_a * 3)
- def test_power(self):
- a = [1]
- bad_a = [-1]
- desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807])
- random = Generator(MT19937(self.seed))
- actual = random.power(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.power, bad_a * 3)
- def test_laplace(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202])
- random = Generator(MT19937(self.seed))
- laplace = random.laplace
- actual = laplace(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- laplace = random.laplace
- actual = laplace(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc, bad_scale * 3)
- def test_gumbel(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081])
- random = Generator(MT19937(self.seed))
- gumbel = random.gumbel
- actual = gumbel(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- gumbel = random.gumbel
- actual = gumbel(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc, bad_scale * 3)
- def test_logistic(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397])
- random = Generator(MT19937(self.seed))
- actual = random.logistic(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.logistic, loc * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- actual = random.logistic(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.logistic, loc, bad_scale * 3)
- assert_equal(random.logistic(1.0, 0.0), 1.0)
- def test_lognormal(self):
- mean = [0]
- sigma = [1]
- bad_sigma = [-1]
- desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276])
- random = Generator(MT19937(self.seed))
- lognormal = random.lognormal
- actual = lognormal(mean * 3, sigma)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
- random = Generator(MT19937(self.seed))
- actual = random.lognormal(mean, sigma * 3)
- assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
- def test_rayleigh(self):
- scale = [1]
- bad_scale = [-1]
- desired = np.array([0.60439534475066, 0.66120048396359, 1.67873398389499])
- random = Generator(MT19937(self.seed))
- actual = random.rayleigh(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.rayleigh, bad_scale * 3)
- def test_wald(self):
- mean = [0.5]
- scale = [1]
- bad_mean = [0]
- bad_scale = [-2]
- desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864])
- random = Generator(MT19937(self.seed))
- actual = random.wald(mean * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.wald, bad_mean * 3, scale)
- assert_raises(ValueError, random.wald, mean * 3, bad_scale)
- random = Generator(MT19937(self.seed))
- actual = random.wald(mean, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, random.wald, bad_mean, scale * 3)
- assert_raises(ValueError, random.wald, mean, bad_scale * 3)
- def test_triangular(self):
- left = [1]
- right = [3]
- mode = [2]
- bad_left_one = [3]
- bad_mode_one = [4]
- bad_left_two, bad_mode_two = right * 2
- desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326])
- random = Generator(MT19937(self.seed))
- triangular = random.triangular
- actual = triangular(left * 3, mode, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
- assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
- assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
- right)
- random = Generator(MT19937(self.seed))
- triangular = random.triangular
- actual = triangular(left, mode * 3, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
- assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
- right)
- random = Generator(MT19937(self.seed))
- triangular = random.triangular
- actual = triangular(left, mode, right * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
- assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
- right * 3)
- assert_raises(ValueError, triangular, 10., 0., 20.)
- assert_raises(ValueError, triangular, 10., 25., 20.)
- assert_raises(ValueError, triangular, 10., 10., 10.)
- def test_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- desired = np.array([0, 0, 1])
- random = Generator(MT19937(self.seed))
- binom = random.binomial
- actual = binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n * 3, p)
- assert_raises(ValueError, binom, n * 3, bad_p_one)
- assert_raises(ValueError, binom, n * 3, bad_p_two)
- random = Generator(MT19937(self.seed))
- actual = random.binomial(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n, p * 3)
- assert_raises(ValueError, binom, n, bad_p_one * 3)
- assert_raises(ValueError, binom, n, bad_p_two * 3)
- def test_negative_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- desired = np.array([0, 2, 1], dtype=np.int64)
- random = Generator(MT19937(self.seed))
- neg_binom = random.negative_binomial
- actual = neg_binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n * 3, p)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
- random = Generator(MT19937(self.seed))
- neg_binom = random.negative_binomial
- actual = neg_binom(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n, p * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
- def test_poisson(self):
- lam = [1]
- bad_lam_one = [-1]
- desired = np.array([0, 0, 3])
- random = Generator(MT19937(self.seed))
- max_lam = random._poisson_lam_max
- bad_lam_two = [max_lam * 2]
- poisson = random.poisson
- actual = poisson(lam * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, poisson, bad_lam_one * 3)
- assert_raises(ValueError, poisson, bad_lam_two * 3)
- def test_zipf(self):
- a = [2]
- bad_a = [0]
- desired = np.array([1, 8, 1])
- random = Generator(MT19937(self.seed))
- zipf = random.zipf
- actual = zipf(a * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, zipf, bad_a * 3)
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, zipf, np.nan)
- assert_raises(ValueError, zipf, [0, 0, np.nan])
- def test_geometric(self):
- p = [0.5]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- desired = np.array([1, 1, 3])
- random = Generator(MT19937(self.seed))
- geometric = random.geometric
- actual = geometric(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, geometric, bad_p_one * 3)
- assert_raises(ValueError, geometric, bad_p_two * 3)
- def test_hypergeometric(self):
- ngood = [1]
- nbad = [2]
- nsample = [2]
- bad_ngood = [-1]
- bad_nbad = [-2]
- bad_nsample_one = [-1]
- bad_nsample_two = [4]
- desired = np.array([0, 0, 1])
- random = Generator(MT19937(self.seed))
- actual = random.hypergeometric(ngood * 3, nbad, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample)
- assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample)
- assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one)
- assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two)
- random = Generator(MT19937(self.seed))
- actual = random.hypergeometric(ngood, nbad * 3, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample)
- assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample)
- assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one)
- assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two)
- random = Generator(MT19937(self.seed))
- hypergeom = random.hypergeometric
- actual = hypergeom(ngood, nbad, nsample * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
- assert_raises(ValueError, hypergeom, -1, 10, 20)
- assert_raises(ValueError, hypergeom, 10, -1, 20)
- assert_raises(ValueError, hypergeom, 10, 10, -1)
- assert_raises(ValueError, hypergeom, 10, 10, 25)
- # ValueError for arguments that are too big.
- assert_raises(ValueError, hypergeom, 2**30, 10, 20)
- assert_raises(ValueError, hypergeom, 999, 2**31, 50)
- assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000)
- def test_logseries(self):
- p = [0.5]
- bad_p_one = [2]
- bad_p_two = [-1]
- desired = np.array([1, 1, 1])
- random = Generator(MT19937(self.seed))
- logseries = random.logseries
- actual = logseries(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, logseries, bad_p_one * 3)
- assert_raises(ValueError, logseries, bad_p_two * 3)
- def test_multinomial(self):
- random = Generator(MT19937(self.seed))
- actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2))
- desired = np.array([[[0, 0, 2, 1, 2, 0],
- [2, 3, 6, 4, 2, 3]],
- [[1, 0, 1, 0, 2, 1],
- [7, 2, 2, 1, 4, 4]],
- [[0, 2, 0, 1, 2, 0],
- [3, 2, 3, 3, 4, 5]]], dtype=np.int64)
- assert_array_equal(actual, desired)
- random = Generator(MT19937(self.seed))
- actual = random.multinomial([5, 20], [1 / 6.] * 6)
- desired = np.array([[0, 0, 2, 1, 2, 0],
- [2, 3, 6, 4, 2, 3]], dtype=np.int64)
- assert_array_equal(actual, desired)
- class TestThread:
- # make sure each state produces the same sequence even in threads
- def setup(self):
- self.seeds = range(4)
- def check_function(self, function, sz):
- from threading import Thread
- out1 = np.empty((len(self.seeds),) + sz)
- out2 = np.empty((len(self.seeds),) + sz)
- # threaded generation
- t = [Thread(target=function, args=(Generator(MT19937(s)), o))
- for s, o in zip(self.seeds, out1)]
- [x.start() for x in t]
- [x.join() for x in t]
- # the same serial
- for s, o in zip(self.seeds, out2):
- function(Generator(MT19937(s)), o)
- # these platforms change x87 fpu precision mode in threads
- if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
- assert_array_almost_equal(out1, out2)
- else:
- assert_array_equal(out1, out2)
- def test_normal(self):
- def gen_random(state, out):
- out[...] = state.normal(size=10000)
- self.check_function(gen_random, sz=(10000,))
- def test_exp(self):
- def gen_random(state, out):
- out[...] = state.exponential(scale=np.ones((100, 1000)))
- self.check_function(gen_random, sz=(100, 1000))
- def test_multinomial(self):
- def gen_random(state, out):
- out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
- self.check_function(gen_random, sz=(10000, 6))
- # See Issue #4263
- class TestSingleEltArrayInput:
- def setup(self):
- self.argOne = np.array([2])
- self.argTwo = np.array([3])
- self.argThree = np.array([4])
- self.tgtShape = (1,)
- def test_one_arg_funcs(self):
- funcs = (random.exponential, random.standard_gamma,
- random.chisquare, random.standard_t,
- random.pareto, random.weibull,
- random.power, random.rayleigh,
- random.poisson, random.zipf,
- random.geometric, random.logseries)
- probfuncs = (random.geometric, random.logseries)
- for func in funcs:
- if func in probfuncs: # p < 1.0
- out = func(np.array([0.5]))
- else:
- out = func(self.argOne)
- assert_equal(out.shape, self.tgtShape)
- def test_two_arg_funcs(self):
- funcs = (random.uniform, random.normal,
- random.beta, random.gamma,
- random.f, random.noncentral_chisquare,
- random.vonmises, random.laplace,
- random.gumbel, random.logistic,
- random.lognormal, random.wald,
- random.binomial, random.negative_binomial)
- probfuncs = (random.binomial, random.negative_binomial)
- for func in funcs:
- if func in probfuncs: # p <= 1
- argTwo = np.array([0.5])
- else:
- argTwo = self.argTwo
- out = func(self.argOne, argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, argTwo[0])
- assert_equal(out.shape, self.tgtShape)
- def test_integers(self, endpoint):
- itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
- np.int32, np.uint32, np.int64, np.uint64]
- func = random.integers
- high = np.array([1])
- low = np.array([0])
- for dt in itype:
- out = func(low, high, endpoint=endpoint, dtype=dt)
- assert_equal(out.shape, self.tgtShape)
- out = func(low[0], high, endpoint=endpoint, dtype=dt)
- assert_equal(out.shape, self.tgtShape)
- out = func(low, high[0], endpoint=endpoint, dtype=dt)
- assert_equal(out.shape, self.tgtShape)
- def test_three_arg_funcs(self):
- funcs = [random.noncentral_f, random.triangular,
- random.hypergeometric]
- for func in funcs:
- out = func(self.argOne, self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, self.argTwo[0], self.argThree)
- assert_equal(out.shape, self.tgtShape)
- @pytest.mark.parametrize("config", JUMP_TEST_DATA)
- def test_jumped(config):
- # Each config contains the initial seed, a number of raw steps
- # the sha256 hashes of the initial and the final states' keys and
- # the position of of the initial and the final state.
- # These were produced using the original C implementation.
- seed = config["seed"]
- steps = config["steps"]
- mt19937 = MT19937(seed)
- # Burn step
- mt19937.random_raw(steps)
- key = mt19937.state["state"]["key"]
- if sys.byteorder == 'big':
- key = key.byteswap()
- sha256 = hashlib.sha256(key)
- assert mt19937.state["state"]["pos"] == config["initial"]["pos"]
- assert sha256.hexdigest() == config["initial"]["key_sha256"]
- jumped = mt19937.jumped()
- key = jumped.state["state"]["key"]
- if sys.byteorder == 'big':
- key = key.byteswap()
- sha256 = hashlib.sha256(key)
- assert jumped.state["state"]["pos"] == config["jumped"]["pos"]
- assert sha256.hexdigest() == config["jumped"]["key_sha256"]
- def test_broadcast_size_error():
- mu = np.ones(3)
- sigma = np.ones((4, 3))
- size = (10, 4, 2)
- assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3)
- with pytest.raises(ValueError):
- random.normal(mu, sigma, size=size)
- with pytest.raises(ValueError):
- random.normal(mu, sigma, size=(1, 3))
- with pytest.raises(ValueError):
- random.normal(mu, sigma, size=(4, 1, 1))
- # 1 arg
- shape = np.ones((4, 3))
- with pytest.raises(ValueError):
- random.standard_gamma(shape, size=size)
- with pytest.raises(ValueError):
- random.standard_gamma(shape, size=(3,))
- with pytest.raises(ValueError):
- random.standard_gamma(shape, size=3)
- # Check out
- out = np.empty(size)
- with pytest.raises(ValueError):
- random.standard_gamma(shape, out=out)
- # 2 arg
- with pytest.raises(ValueError):
- random.binomial(1, [0.3, 0.7], size=(2, 1))
- with pytest.raises(ValueError):
- random.binomial([1, 2], 0.3, size=(2, 1))
- with pytest.raises(ValueError):
- random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
- with pytest.raises(ValueError):
- random.multinomial([2, 2], [.3, .7], size=(2, 1))
- # 3 arg
- a = random.chisquare(5, size=3)
- b = random.chisquare(5, size=(4, 3))
- c = random.chisquare(5, size=(5, 4, 3))
- assert random.noncentral_f(a, b, c).shape == (5, 4, 3)
- with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"):
- random.noncentral_f(a, b, c, size=(6, 5, 1, 1))
- def test_broadcast_size_scalar():
- mu = np.ones(3)
- sigma = np.ones(3)
- random.normal(mu, sigma, size=3)
- with pytest.raises(ValueError):
- random.normal(mu, sigma, size=2)
|