yolor-w6.yaml 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # parameters
  2. nc: 80 # number of classes
  3. depth_multiple: 1.0 # expand model depth
  4. width_multiple: 1.0 # expand layer channels
  5. # anchors
  6. anchors:
  7. - [ 19,27, 44,40, 38,94 ] # P3/8
  8. - [ 96,68, 86,152, 180,137 ] # P4/16
  9. - [ 140,301, 303,264, 238,542 ] # P5/32
  10. - [ 436,615, 739,380, 925,792 ] # P6/64
  11. # CSP-Darknet backbone
  12. backbone:
  13. # [from, number, module, args]
  14. [[-1, 1, ReOrg, []], # 0
  15. [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
  16. [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
  17. [-1, 3, BottleneckCSPA, [128]],
  18. [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
  19. [-1, 7, BottleneckCSPA, [256]],
  20. [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
  21. [-1, 7, BottleneckCSPA, [512]],
  22. [-1, 1, Conv, [768, 3, 2]], # 8-P5/32
  23. [-1, 3, BottleneckCSPA, [768]],
  24. [-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
  25. [-1, 3, BottleneckCSPA, [1024]], # 11
  26. ]
  27. # CSP-Dark-PAN head
  28. head:
  29. [[-1, 1, SPPCSPC, [512]], # 12
  30. [-1, 1, Conv, [384, 1, 1]],
  31. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  32. [-6, 1, Conv, [384, 1, 1]], # route backbone P5
  33. [[-1, -2], 1, Concat, [1]],
  34. [-1, 3, BottleneckCSPB, [384]], # 17
  35. [-1, 1, Conv, [256, 1, 1]],
  36. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  37. [-13, 1, Conv, [256, 1, 1]], # route backbone P4
  38. [[-1, -2], 1, Concat, [1]],
  39. [-1, 3, BottleneckCSPB, [256]], # 22
  40. [-1, 1, Conv, [128, 1, 1]],
  41. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  42. [-20, 1, Conv, [128, 1, 1]], # route backbone P3
  43. [[-1, -2], 1, Concat, [1]],
  44. [-1, 3, BottleneckCSPB, [128]], # 27
  45. [-1, 1, Conv, [256, 3, 1]],
  46. [-2, 1, Conv, [256, 3, 2]],
  47. [[-1, 22], 1, Concat, [1]], # cat
  48. [-1, 3, BottleneckCSPB, [256]], # 31
  49. [-1, 1, Conv, [512, 3, 1]],
  50. [-2, 1, Conv, [384, 3, 2]],
  51. [[-1, 17], 1, Concat, [1]], # cat
  52. [-1, 3, BottleneckCSPB, [384]], # 35
  53. [-1, 1, Conv, [768, 3, 1]],
  54. [-2, 1, Conv, [512, 3, 2]],
  55. [[-1, 12], 1, Concat, [1]], # cat
  56. [-1, 3, BottleneckCSPB, [512]], # 39
  57. [-1, 1, Conv, [1024, 3, 1]],
  58. [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
  59. ]