/** * Copyright (c) 2012 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* Attention! * To maintain compliance with Nordic Semiconductor ASA's Bluetooth profile * qualification listings, this section of source code must not be modified. */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(BLE_GLS) #include "ble_gls.h" #include #include "ble_gls_db.h" #include "ble_racp.h" #include "ble_srv_common.h" #define OPERAND_FILTER_TYPE_SEQ_NUM 0x01 /**< Filter data using Sequence Number criteria. */ #define OPERAND_FILTER_TYPE_FACING_TIME 0x02 /**< Filter data using User Facing Time criteria. */ #define OPERAND_FILTER_TYPE_RFU_START 0x07 /**< Start of filter types reserved For Future Use range */ #define OPERAND_FILTER_TYPE_RFU_END 0xFF /**< End of filter types reserved For Future Use range */ #define OPCODE_LENGTH 1 /**< Length of opcode inside Glucose Measurement packet. */ #define HANDLE_LENGTH 2 /**< Length of handle inside Glucose Measurement packet. */ #define MAX_GLM_LEN (BLE_GATT_ATT_MTU_DEFAULT - OPCODE_LENGTH - \ HANDLE_LENGTH) /**< Maximum size of a transmitted Glucose Measurement. */ #define RACP_OPERAND_LEN 2 /**< Record Access Control Point operand length. */ #define GLS_NACK_PROC_ALREADY_IN_PROGRESS BLE_GATT_STATUS_ATTERR_APP_BEGIN + 0 /**< Reply when a requested procedure is already in progress. */ #define GLS_NACK_CCCD_IMPROPERLY_CONFIGURED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 1 /**< Reply when the a s CCCD is improperly configured. */ static bool m_procesing_active; /**< Processing requested data. */ static uint16_t m_next_seq_num; /**< Sequence number of the next database record. */ static uint8_t m_racp_proc_operator; /**< Operator of current request. */ static uint16_t m_racp_proc_seq_num; /**< Sequence number of current request. */ static uint8_t m_racp_proc_record_ndx; /**< Current record index. */ static uint8_t m_racp_proc_records_reported; /**< Number of reported records. */ /**@brief Function for interception of GATT errors and @ref nrf_ble_gq errors. * * @param[in] nrf_error Error code. * @param[in] p_ctx Parameter from the event handler. * @param[in] conn_handle Connection handle. */ static void gatt_error_handler(uint32_t nrf_error, void * p_ctx, uint16_t conn_handle) { ble_gls_t * p_gls = (ble_gls_t *)p_ctx; if ((p_gls->error_handler) != NULL && (nrf_error != NRF_ERROR_INVALID_STATE)) { p_gls->error_handler(nrf_error); } } /**@brief Function for setting the next sequence number by reading the last record in the data base. * * @return NRF_SUCCESS on successful initialization of service, otherwise an error code. */ static uint32_t next_sequence_number_set(void) { uint16_t num_records; ble_gls_rec_t rec; num_records = ble_gls_db_num_records_get(); if (num_records > 0) { // Get last record uint32_t err_code = ble_gls_db_record_get(num_records - 1, &rec); if (err_code != NRF_SUCCESS) { return err_code; } m_next_seq_num = rec.meas.sequence_number + 1; } else { m_next_seq_num = 0; } return NRF_SUCCESS; } /**@brief Function for encoding a Glucose measurement. * * @param[in] p_meas Measurement to be encoded. * @param[out] p_encoded_buffer Pointer to buffer where the encoded measurement is to be stored. * * @return Size of encoded measurement. */ static uint8_t gls_meas_encode(const ble_gls_meas_t * p_meas, uint8_t * p_encoded_buffer) { uint8_t len = 0; p_encoded_buffer[len++] = p_meas->flags; len += uint16_encode(p_meas->sequence_number, &p_encoded_buffer[len]); len += ble_date_time_encode(&p_meas->base_time, &p_encoded_buffer[len]); if (p_meas->flags & BLE_GLS_MEAS_FLAG_TIME_OFFSET) { len += uint16_encode(p_meas->time_offset, &p_encoded_buffer[len]); } if (p_meas->flags & BLE_GLS_MEAS_FLAG_CONC_TYPE_LOC) { uint16_t encoded_concentration; encoded_concentration = ((p_meas->glucose_concentration.exponent << 12) & 0xF000) | ((p_meas->glucose_concentration.mantissa << 0) & 0x0FFF); p_encoded_buffer[len++] = (uint8_t)(encoded_concentration); p_encoded_buffer[len++] = (uint8_t)(encoded_concentration >> 8); p_encoded_buffer[len++] = (p_meas->sample_location << 4) | (p_meas->type & 0x0F); } if (p_meas->flags & BLE_GLS_MEAS_FLAG_SENSOR_STATUS) { len += uint16_encode(p_meas->sensor_status_annunciation, &p_encoded_buffer[len]); } return len; } uint32_t ble_gls_init(ble_gls_t * p_gls, const ble_gls_init_t * p_gls_init) { VERIFY_PARAM_NOT_NULL(p_gls); VERIFY_PARAM_NOT_NULL(p_gls_init); VERIFY_PARAM_NOT_NULL(p_gls_init->p_gatt_queue); uint32_t err_code; uint8_t num_recs; uint8_t init_value_encoded[MAX_GLM_LEN]; ble_uuid_t ble_uuid; ble_add_char_params_t add_char_params; ble_gls_rec_t initial_gls_rec_value; // Initialize data base err_code = ble_gls_db_init(); if (err_code != NRF_SUCCESS) { return err_code; } err_code = next_sequence_number_set(); if (err_code != NRF_SUCCESS) { return err_code; } // Initialize service structure p_gls->evt_handler = p_gls_init->evt_handler; p_gls->error_handler = p_gls_init->error_handler; p_gls->feature = p_gls_init->feature; p_gls->is_context_supported = p_gls_init->is_context_supported; p_gls->conn_handle = BLE_CONN_HANDLE_INVALID; p_gls->p_gatt_queue = p_gls_init->p_gatt_queue; // Add service BLE_UUID_BLE_ASSIGN(ble_uuid, BLE_UUID_GLUCOSE_SERVICE); err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY, &ble_uuid, &p_gls->service_handle); if (err_code != NRF_SUCCESS) { return err_code; } // Add glucose measurement characteristic memset(&add_char_params, 0, sizeof(add_char_params)); memset(&initial_gls_rec_value, 0, sizeof(initial_gls_rec_value)); num_recs = ble_gls_db_num_records_get(); if (num_recs > 0) { err_code = ble_gls_db_record_get(num_recs - 1, &initial_gls_rec_value); if (err_code != NRF_SUCCESS) { return err_code; } } add_char_params.uuid = BLE_UUID_GLUCOSE_MEASUREMENT_CHAR; add_char_params.max_len = MAX_GLM_LEN; add_char_params.init_len = gls_meas_encode(&initial_gls_rec_value.meas, init_value_encoded); add_char_params.is_var_len = true; add_char_params.char_props.notify = 1; add_char_params.cccd_write_access = p_gls_init->gl_meas_cccd_wr_sec; add_char_params.p_init_value = init_value_encoded; err_code = characteristic_add(p_gls->service_handle, &add_char_params, &p_gls->glm_handles); if (err_code != NRF_SUCCESS) { return err_code; } // Add glucose measurement feature characteristic memset(&add_char_params, 0, sizeof(add_char_params)); add_char_params.uuid = BLE_UUID_GLUCOSE_FEATURE_CHAR; add_char_params.max_len = sizeof(uint16_t); add_char_params.init_len = uint16_encode(p_gls->feature, init_value_encoded); add_char_params.p_init_value = init_value_encoded; add_char_params.char_props.read = 1; add_char_params.read_access = p_gls_init->gl_feature_rd_sec; err_code = characteristic_add(p_gls->service_handle, &add_char_params, &p_gls->glf_handles); if (err_code != NRF_SUCCESS) { return err_code; } // Add record control access point characteristic memset(&add_char_params, 0, sizeof(add_char_params)); add_char_params.uuid = BLE_UUID_RECORD_ACCESS_CONTROL_POINT_CHAR; add_char_params.max_len = BLE_GATT_ATT_MTU_DEFAULT; add_char_params.is_var_len = true; add_char_params.char_props.indicate = 1; add_char_params.char_props.write = 1; add_char_params.cccd_write_access = p_gls_init->racp_cccd_wr_sec; add_char_params.write_access = p_gls_init->racp_wr_sec; add_char_params.is_defered_write = true; err_code = characteristic_add(p_gls->service_handle, &add_char_params, &p_gls->racp_handles); if (err_code != NRF_SUCCESS) { return err_code; } return NRF_SUCCESS; } /**@brief Function for sending a response from the Record Access Control Point. * * @param[in] p_gls Service instance. * @param[in] p_racp_val RACP value to be sent. */ static void racp_send(ble_gls_t * p_gls, ble_racp_value_t * p_racp_val) { uint32_t err_code; uint8_t encoded_resp[25]; uint16_t len; // Send indication len = ble_racp_encode(p_racp_val, encoded_resp); nrf_ble_gq_req_t gls_req; memset(&gls_req, 0, sizeof(nrf_ble_gq_req_t)); gls_req.type = NRF_BLE_GQ_REQ_GATTS_HVX; gls_req.error_handler.cb = gatt_error_handler; gls_req.error_handler.p_ctx = p_gls; gls_req.params.gatts_hvx.handle = p_gls->racp_handles.value_handle; gls_req.params.gatts_hvx.type = BLE_GATT_HVX_INDICATION; gls_req.params.gatts_hvx.offset = 0; gls_req.params.gatts_hvx.p_data = encoded_resp; gls_req.params.gatts_hvx.p_len = &len; err_code = nrf_ble_gq_item_add(p_gls->p_gatt_queue, &gls_req, p_gls->conn_handle); // Report error to application if ((p_gls->error_handler != NULL) && (err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE)) { p_gls->error_handler(err_code); } } /**@brief Function for sending a RACP response containing a Response Code Op Code and a Response Code Value. * * @param[in] p_gls Service instance. * @param[in] opcode RACP Op Code. * @param[in] value RACP Response Code Value. */ static void racp_response_code_send(ble_gls_t * p_gls, uint8_t opcode, uint8_t value) { ble_racp_value_t racp_response; uint8_t pending_racp_response_operand[RACP_OPERAND_LEN] = {0}; memset(&racp_response, 0, sizeof(racp_response)); racp_response.opcode = RACP_OPCODE_RESPONSE_CODE; racp_response.operator = RACP_OPERATOR_NULL; racp_response.operand_len = 2; racp_response.p_operand = pending_racp_response_operand; pending_racp_response_operand[0] = opcode; pending_racp_response_operand[1] = value; racp_send(p_gls, &racp_response); } /**@brief Function for sending a glucose measurement/context. * * @param[in] p_gls Service instance. * @param[in] p_rec Measurement to be sent. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t glucose_meas_send(ble_gls_t * p_gls, ble_gls_rec_t * p_rec) { uint32_t err_code; uint8_t encoded_glm[MAX_GLM_LEN]; uint16_t len; uint16_t hvx_len; ble_gatts_hvx_params_t hvx_params; len = gls_meas_encode(&p_rec->meas, encoded_glm); hvx_len = len; memset(&hvx_params, 0, sizeof(hvx_params)); hvx_params.handle = p_gls->glm_handles.value_handle; hvx_params.type = BLE_GATT_HVX_NOTIFICATION; hvx_params.offset = 0; hvx_params.p_len = &hvx_len; hvx_params.p_data = encoded_glm; err_code = sd_ble_gatts_hvx(p_gls->conn_handle, &hvx_params); if (err_code == NRF_SUCCESS) { if (hvx_len != len) { err_code = NRF_ERROR_DATA_SIZE; } else { // Measurement successfully sent m_racp_proc_records_reported++; } } return err_code; } /**@brief Function for responding to the ALL operation. * * @param[in] p_gls Service instance. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t racp_report_records_all(ble_gls_t * p_gls) { uint16_t total_records = ble_gls_db_num_records_get(); if (m_racp_proc_record_ndx >= total_records) { m_procesing_active = false; } else { uint32_t err_code; ble_gls_rec_t rec; err_code = ble_gls_db_record_get(m_racp_proc_record_ndx, &rec); if (err_code != NRF_SUCCESS) { return err_code; } err_code = glucose_meas_send(p_gls, &rec); if (err_code != NRF_SUCCESS) { return err_code; } } return NRF_SUCCESS; } /**@brief Function for responding to the FIRST or the LAST operation. * * @param[in] p_gls Service instance. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t racp_report_records_first_last(ble_gls_t * p_gls) { uint32_t err_code; ble_gls_rec_t rec; uint16_t total_records; total_records = ble_gls_db_num_records_get(); if ((m_racp_proc_records_reported != 0) || (total_records == 0)) { m_procesing_active = false; } else { if (m_racp_proc_operator == RACP_OPERATOR_FIRST) { err_code = ble_gls_db_record_get(0, &rec); if (err_code != NRF_SUCCESS) { return err_code; } } else if (m_racp_proc_operator == RACP_OPERATOR_LAST) { err_code = ble_gls_db_record_get(total_records - 1, &rec); if (err_code != NRF_SUCCESS) { return err_code; } } err_code = glucose_meas_send(p_gls, &rec); if (err_code != NRF_SUCCESS) { return err_code; } } return NRF_SUCCESS; } /**@brief Function for responding to the GREATER_OR_EQUAL operation. * * @param[in] p_gls Service instance. * * @return NRF_SUCCESS on success, otherwise an error code. */ static uint32_t racp_report_records_greater_or_equal(ble_gls_t * p_gls) { uint16_t total_records = ble_gls_db_num_records_get(); while (m_racp_proc_record_ndx < total_records) { uint32_t err_code; ble_gls_rec_t rec; err_code = ble_gls_db_record_get(m_racp_proc_record_ndx, &rec); if (err_code != NRF_SUCCESS) { return err_code; } if (rec.meas.sequence_number >= m_racp_proc_seq_num) { err_code = glucose_meas_send(p_gls, &rec); if (err_code != NRF_SUCCESS) { return err_code; } break; } m_racp_proc_record_ndx++; } if (m_racp_proc_record_ndx == total_records) { m_procesing_active = false; } return NRF_SUCCESS; } /**@brief Function for informing that the REPORT RECORDS procedure is completed. * * @param[in] p_gls Service instance. */ static void racp_report_records_completed(ble_gls_t * p_gls) { uint8_t resp_code_value; if (m_racp_proc_records_reported > 0) { resp_code_value = RACP_RESPONSE_SUCCESS; } else { resp_code_value = RACP_RESPONSE_NO_RECORDS_FOUND; } racp_response_code_send(p_gls, RACP_OPCODE_REPORT_RECS, resp_code_value); } /**@brief Function for the RACP report records procedure. * * @param[in] p_gls Service instance. */ static void racp_report_records_procedure(ble_gls_t * p_gls) { uint32_t err_code; while (m_procesing_active) { // Execute requested procedure switch (m_racp_proc_operator) { case RACP_OPERATOR_ALL: err_code = racp_report_records_all(p_gls); break; case RACP_OPERATOR_FIRST: case RACP_OPERATOR_LAST: err_code = racp_report_records_first_last(p_gls); break; case RACP_OPERATOR_GREATER_OR_EQUAL: err_code = racp_report_records_greater_or_equal(p_gls); break; default: // Report error to application if (p_gls->error_handler != NULL) { p_gls->error_handler(NRF_ERROR_INTERNAL); } return; } // Error handling switch (err_code) { case NRF_SUCCESS: if (m_procesing_active) { m_racp_proc_record_ndx++; } else { racp_report_records_completed(p_gls); } break; case NRF_ERROR_RESOURCES: // Wait for TX_COMPLETE event to resume transmission return; case NRF_ERROR_INVALID_STATE: // Notification is probably not enabled. Ignore request. m_procesing_active = false; return; default: // Report error to application if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } } } /**@brief Function for testing if the received request is to be executed. * * @param[in] p_racp_request Request to be checked. * @param[out] p_response_code Response code to be sent in case the request is rejected. * RACP_RESPONSE_RESERVED is returned if the received message is * to be rejected without sending a response. * * @return TRUE if the request is to be executed, FALSE if it is to be rejected. * If it is to be rejected, p_response_code will contain the response code to be * returned to the central. */ static bool is_request_to_be_executed(ble_racp_value_t const * p_racp_request, uint8_t * p_response_code) { *p_response_code = RACP_RESPONSE_RESERVED; if (p_racp_request->opcode == RACP_OPCODE_ABORT_OPERATION) { if (m_procesing_active) { if (p_racp_request->operator != RACP_OPERATOR_NULL) { *p_response_code = RACP_RESPONSE_INVALID_OPERATOR; } else if (p_racp_request->operand_len != 0) { *p_response_code = RACP_RESPONSE_INVALID_OPERAND; } else { *p_response_code = RACP_RESPONSE_SUCCESS; } } else { *p_response_code = RACP_RESPONSE_ABORT_FAILED; } } else if (m_procesing_active) { return false; } // Supported opcodes. else if ((p_racp_request->opcode == RACP_OPCODE_REPORT_RECS) || (p_racp_request->opcode == RACP_OPCODE_REPORT_NUM_RECS)) { switch (p_racp_request->operator) { // Operators WITHOUT a filter. case RACP_OPERATOR_ALL: case RACP_OPERATOR_FIRST: case RACP_OPERATOR_LAST: if (p_racp_request->operand_len != 0) { *p_response_code = RACP_RESPONSE_INVALID_OPERAND; } break; // Operators WITH a filter. case RACP_OPERATOR_GREATER_OR_EQUAL: if (p_racp_request->p_operand[0] == OPERAND_FILTER_TYPE_SEQ_NUM) { if (p_racp_request->operand_len != 3) { *p_response_code = RACP_RESPONSE_INVALID_OPERAND; } } else if (p_racp_request->p_operand[0] == OPERAND_FILTER_TYPE_FACING_TIME) { *p_response_code = RACP_RESPONSE_OPERAND_UNSUPPORTED; } else if (p_racp_request->p_operand[0] >= OPERAND_FILTER_TYPE_RFU_START) { *p_response_code = RACP_RESPONSE_OPERAND_UNSUPPORTED; } else { *p_response_code = RACP_RESPONSE_INVALID_OPERAND; } break; // Unsupported operators. case RACP_OPERATOR_LESS_OR_EQUAL: case RACP_OPERATOR_RANGE: *p_response_code = RACP_RESPONSE_OPERATOR_UNSUPPORTED; break; // Invalid operators. case RACP_OPERATOR_NULL: default: if (p_racp_request->operator >= RACP_OPERATOR_RFU_START) { *p_response_code = RACP_RESPONSE_OPERATOR_UNSUPPORTED; } else { *p_response_code = RACP_RESPONSE_INVALID_OPERATOR; } break; } } // Unsupported opcodes, else if (p_racp_request->opcode == RACP_OPCODE_DELETE_RECS) { *p_response_code = RACP_RESPONSE_OPCODE_UNSUPPORTED; } // Unknown opcodes. else { *p_response_code = RACP_RESPONSE_OPCODE_UNSUPPORTED; } // NOTE: The computation of the return value will change slightly when deferred write has been // implemented in the stack. return (*p_response_code == RACP_RESPONSE_RESERVED); } /**@brief Function for processing a REPORT RECORDS request. * * @param[in] p_gls Service instance. * @param[in] p_racp_request Request to be executed. */ static void report_records_request_execute(ble_gls_t * p_gls, ble_racp_value_t * p_racp_request) { uint16_t seq_num = (p_racp_request->p_operand[2] << 8) | p_racp_request->p_operand[1]; m_procesing_active = true; m_racp_proc_record_ndx = 0; m_racp_proc_operator = p_racp_request->operator; m_racp_proc_records_reported = 0; m_racp_proc_seq_num = seq_num; racp_report_records_procedure(p_gls); } /**@brief Function for processing a REPORT NUM RECORDS request. * * @param[in] p_gls Service instance. * @param[in] p_racp_request Request to be executed. */ static void report_num_records_request_execute(ble_gls_t * p_gls, ble_racp_value_t * p_racp_request) { uint16_t total_records; uint16_t num_records; total_records = ble_gls_db_num_records_get(); num_records = 0; if (p_racp_request->operator == RACP_OPERATOR_ALL) { num_records = total_records; } else if (p_racp_request->operator == RACP_OPERATOR_GREATER_OR_EQUAL) { uint16_t seq_num; uint16_t i; seq_num = (p_racp_request->p_operand[2] << 8) | p_racp_request->p_operand[1]; for (i = 0; i < total_records; i++) { uint32_t err_code; ble_gls_rec_t rec; err_code = ble_gls_db_record_get(i, &rec); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } if (rec.meas.sequence_number >= seq_num) { num_records++; } } } else if ((p_racp_request->operator == RACP_OPERATOR_FIRST) || (p_racp_request->operator == RACP_OPERATOR_LAST)) { if (total_records > 0) { num_records = 1; } } ble_racp_value_t racp_response; uint8_t pending_racp_response_operand[RACP_OPERAND_LEN] = {0}; memset(&racp_response, 0, sizeof(racp_response)); racp_response.opcode = RACP_OPCODE_NUM_RECS_RESPONSE; racp_response.operator = RACP_OPERATOR_NULL; racp_response.operand_len = sizeof(uint16_t); racp_response.p_operand = pending_racp_response_operand; pending_racp_response_operand[0] = num_records & 0xFF; pending_racp_response_operand[1] = num_records >> 8; racp_send(p_gls, &racp_response); } /**@brief Function for checking if the CCCDs are configured. * * @param[in] p_gls Service instance. * @param[in] p_are_cccd_configured boolean indicating if both cccds are configured */ uint32_t ble_gls_are_cccd_configured(ble_gls_t * p_gls, bool * p_are_cccd_configured) { uint32_t err_code; uint8_t cccd_value_buf[BLE_CCCD_VALUE_LEN]; bool is_glm_notif_enabled = false; bool is_racp_indic_enabled = false; ble_gatts_value_t gatts_value; // Initialize value struct. memset(&gatts_value, 0, sizeof(gatts_value)); gatts_value.len = BLE_CCCD_VALUE_LEN; gatts_value.offset = 0; gatts_value.p_value = cccd_value_buf; err_code = sd_ble_gatts_value_get(p_gls->conn_handle, p_gls->glm_handles.cccd_handle, &gatts_value); if (err_code != NRF_SUCCESS) { return err_code; } is_glm_notif_enabled = ble_srv_is_notification_enabled(cccd_value_buf); err_code = sd_ble_gatts_value_get(p_gls->conn_handle, p_gls->racp_handles.cccd_handle, &gatts_value); if (err_code != NRF_SUCCESS) { return err_code; } is_racp_indic_enabled = ble_srv_is_indication_enabled(cccd_value_buf); if (is_racp_indic_enabled & is_glm_notif_enabled) { *p_are_cccd_configured = true; } else { *p_are_cccd_configured = false; } return NRF_SUCCESS; } /**@brief Function for handling a write event to the Record Access Control Point. * * @param[in] p_gls Service instance. * @param[in] p_evt_write WRITE event to be handled. */ static void on_racp_value_write(ble_gls_t * p_gls, ble_gatts_evt_write_t const * p_evt_write) { ble_racp_value_t racp_request; uint8_t response_code; ble_gatts_rw_authorize_reply_params_t auth_reply; bool are_cccd_configured; uint32_t err_code; auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; auth_reply.params.write.offset = 0; auth_reply.params.write.len = 0; auth_reply.params.write.p_data = NULL; err_code = ble_gls_are_cccd_configured(p_gls, &are_cccd_configured); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } if (!are_cccd_configured) { auth_reply.params.write.gatt_status = GLS_NACK_CCCD_IMPROPERLY_CONFIGURED; err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle, &auth_reply); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } } return; } // Decode request. ble_racp_decode(p_evt_write->len, (uint8_t *)p_evt_write->data, &racp_request); // Check if request is to be executed. if (is_request_to_be_executed(&racp_request, &response_code)) { auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS; auth_reply.params.write.update = 1; err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle, &auth_reply); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } // Execute request. if (racp_request.opcode == RACP_OPCODE_REPORT_RECS) { report_records_request_execute(p_gls, &racp_request); } else if (racp_request.opcode == RACP_OPCODE_REPORT_NUM_RECS) { report_num_records_request_execute(p_gls, &racp_request); } } else if (response_code != RACP_RESPONSE_RESERVED) { auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS; auth_reply.params.write.update = 1; err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle, &auth_reply); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } // Abort any running procedure. m_procesing_active = false; // Respond with error code. racp_response_code_send(p_gls, racp_request.opcode, response_code); } else { auth_reply.params.write.gatt_status = GLS_NACK_PROC_ALREADY_IN_PROGRESS; err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle, &auth_reply); if (err_code != NRF_SUCCESS) { if (p_gls->error_handler != NULL) { p_gls->error_handler(err_code); } return; } } } /**@brief Function for handling the Glucose measurement CCCD write event. * * @param[in] p_gls Service instance. * @param[in] p_evt_write WRITE event to be handled. */ static void on_glm_cccd_write(ble_gls_t * p_gls, ble_gatts_evt_write_t const * p_evt_write) { if (p_evt_write->len == 2) { // CCCD written, update notification state ble_gls_evt_t evt; if (ble_srv_is_notification_enabled(p_evt_write->data)) { evt.evt_type = BLE_GLS_EVT_NOTIFICATION_ENABLED; } else { evt.evt_type = BLE_GLS_EVT_NOTIFICATION_DISABLED; } if (p_gls->evt_handler != NULL) { p_gls->evt_handler(p_gls, &evt); } } } /**@brief Function for handling the WRITE event. * * @details Handles WRITE events from the BLE stack. * * @param[in] p_gls Glucose Service structure. * @param[in] p_ble_evt Event received from the BLE stack. */ static void on_write(ble_gls_t * p_gls, ble_evt_t const * p_ble_evt) { ble_gatts_evt_write_t const * p_evt_write = &p_ble_evt->evt.gatts_evt.params.write; if (p_evt_write->handle == p_gls->glm_handles.cccd_handle) { on_glm_cccd_write(p_gls, p_evt_write); } else if (p_evt_write->handle == p_gls->racp_handles.value_handle) { on_racp_value_write(p_gls, p_evt_write); } } /**@brief Function for handling the TX_COMPLETE event. * * @details Handles TX_COMPLETE events from the BLE stack. * * @param[in] p_gls Glucose Service structure. * @param[in] p_ble_evt Event received from the BLE stack. */ static void on_tx_complete(ble_gls_t * p_gls, ble_evt_t const * p_ble_evt) { if (m_procesing_active) { racp_report_records_procedure(p_gls); } } static void on_rw_authorize_request(ble_gls_t * p_gls, ble_gatts_evt_t const * p_gatts_evt) { ble_gatts_evt_rw_authorize_request_t const * p_auth_req = &p_gatts_evt->params.authorize_request; if (p_auth_req->type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { if ( (p_gatts_evt->params.authorize_request.request.write.op != BLE_GATTS_OP_PREP_WRITE_REQ) && (p_gatts_evt->params.authorize_request.request.write.op != BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) && (p_gatts_evt->params.authorize_request.request.write.op != BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL) ) { if (p_auth_req->request.write.handle == p_gls->racp_handles.value_handle) { on_racp_value_write(p_gls, &p_auth_req->request.write); } } } } void ble_gls_on_ble_evt(ble_evt_t const * p_ble_evt, void * p_context) { ble_gls_t * p_gls = (ble_gls_t *)p_context; ret_code_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: p_gls->conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_gq_conn_handle_register(p_gls->p_gatt_queue, p_ble_evt->evt.gap_evt.conn_handle); if ((err_code != NRF_SUCCESS) && (p_gls->error_handler != NULL)) { p_gls->error_handler(err_code); } break; case BLE_GAP_EVT_DISCONNECTED: p_gls->conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GATTS_EVT_WRITE: on_write(p_gls, p_ble_evt); break; case BLE_GATTS_EVT_HVN_TX_COMPLETE: on_tx_complete(p_gls, p_ble_evt); break; case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: on_rw_authorize_request(p_gls, &p_ble_evt->evt.gatts_evt); break; default: // No implementation needed. break; } } uint32_t ble_gls_glucose_new_meas(ble_gls_t * p_gls, ble_gls_rec_t * p_rec) { p_rec->meas.sequence_number = m_next_seq_num++; return ble_gls_db_record_add(p_rec); } #endif // NRF_MODULE_ENABLED(BLE_GLS)