/**
 * Copyright (c) 2012 - 2020, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef NRF_TEMP_H__
#define NRF_TEMP_H__

#include <nrfx.h>

#ifdef __cplusplus
extern "C" {
#endif

/**
* @defgroup nrf_temp_hal_deprecated TEMP HAL (deprecated)
* @{
* @ingroup nrf_temp
* @brief   Temperature module init and read functions.
*/

/** @brief Workaround specific define - sign mask.*/
#define MASK_SIGN           (0x00000200UL)

/** @brief Workaround specific define - sign extension mask.*/
#define MASK_SIGN_EXTENSION (0xFFFFFC00UL)

/**
 * @brief Function for preparing the TEMP module for temperature measurement.
 *
 * This function initializes the TEMP module and writes to the hidden configuration register.
 */
static __INLINE void nrf_temp_init(void)
{
    /**@note Workaround for PAN_028 rev2.0A anomaly 31 - TEMP: Temperature offset value has to be manually loaded to the TEMP module */
    *(uint32_t *) 0x4000C504 = 0;
}

/**
 * @brief Function for reading temperature measurement.
 *
 * The function reads the 10-bit 2's complement value and transforms it to a 32-bit 2's complement value.
 */
static __INLINE int32_t nrf_temp_read(void)
{
    /**@note Workaround for PAN_028 rev2.0A anomaly 28 - TEMP: Negative measured values are not represented correctly */
    return ((NRF_TEMP->TEMP & MASK_SIGN) != 0) ?
                (int32_t)(NRF_TEMP->TEMP | MASK_SIGN_EXTENSION) : (NRF_TEMP->TEMP);
}

/** @} */

/**
* @defgroup nrf_temp_hal TEMP HAL
* @{
* @ingroup nrf_temp
* @brief   Hardware access layer for managing the Temperature sensor (TEMP).
*/

/** @brief TEMP tasks. */
typedef enum
{
    NRF_TEMP_TASK_START = offsetof(NRF_TEMP_Type, TASKS_START), /**< Start temperature measurement. */
    NRF_TEMP_TASK_STOP  = offsetof(NRF_TEMP_Type, TASKS_STOP)   /**< Stop temperature measurement. */
} nrf_temp_task_t;

/** @brief TEMP events. */
typedef enum
{
    NRF_TEMP_EVENT_DATARDY = offsetof(NRF_TEMP_Type, EVENTS_DATARDY) /**< Temperature measurement complete, data ready. */
} nrf_temp_event_t;

/** @brief TEMP interrupts. */
typedef enum
{
    NRF_TEMP_INT_DATARDY_MASK = TEMP_INTENSET_DATARDY_Msk /**< Interrupt on DATARDY event.  */
} nrf_temp_int_mask_t;

/**
 * @brief Function for enabling specified interrupts.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] mask  Mask of interrupts to be enabled.
 */
__STATIC_INLINE void nrf_temp_int_enable(NRF_TEMP_Type * p_reg, uint32_t mask);

/**
 * @brief Function for disabling specified interrupts.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] mask  Mask of interrupts to be disabled.
 */
__STATIC_INLINE void nrf_temp_int_disable(NRF_TEMP_Type * p_reg, uint32_t mask);

/**
 * @brief Function for retrieving the state of a given interrupt.
 *
 * @param[in] p_reg    Pointer to the structure of registers of the peripheral.
 * @param[in] temp_int Interrupt to be checked.
 *
 * @retval true  The interrupt is enabled.
 * @retval false The interrupt is not enabled.
 */
__STATIC_INLINE bool nrf_temp_int_enable_check(NRF_TEMP_Type const * p_reg,
                                               nrf_temp_int_mask_t   temp_int);

/**
 * @brief Function for getting the address of the specified TEMP task register.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] task  Requested task.
 *
 * @return Address of the requested task register.
 */
__STATIC_INLINE uint32_t nrf_temp_task_address_get(NRF_TEMP_Type const * p_reg,
                                                   nrf_temp_task_t       task);

/**
 * @brief Function for activating the specified TEMP task.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] task  Task to be activated.
 */
__STATIC_INLINE void nrf_temp_task_trigger(NRF_TEMP_Type * p_reg, nrf_temp_task_t task);

/**
 * @brief Function for getting the address of the specified TEMP event register.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] event Requested event.
 *
 * @return Address of the requested event register.
 */
__STATIC_INLINE uint32_t nrf_temp_event_address_get(NRF_TEMP_Type const * p_reg,
                                                    nrf_temp_event_t      event);

/**
 * @brief Function for clearing the specified TEMP event.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] event Event to clear.
 */
__STATIC_INLINE void nrf_temp_event_clear(NRF_TEMP_Type *  p_reg, nrf_temp_event_t event);

/**
 * @brief Function for getting the state of a specific event.
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 * @param[in] event Event to be checked.
 *
 * @retval true  The event has been generated.
 * @retval false The event has not been generated.
 */
__STATIC_INLINE bool nrf_temp_event_check(NRF_TEMP_Type const * p_reg, nrf_temp_event_t event);

/**
 * @brief Function for getting the result of temperature measurement.
 *
 * @note Returned value is in 2's complement format, 0.25 °C steps
 *
 * @param[in] p_reg Pointer to the structure of registers of the peripheral.
 *
 * @return Temperature value register contents.
 */
__STATIC_INLINE int32_t nrf_temp_result_get(NRF_TEMP_Type const * p_reg);

#ifndef SUPPRESS_INLINE_IMPLEMENTATION

__STATIC_INLINE void nrf_temp_int_enable(NRF_TEMP_Type * p_reg, uint32_t mask)
{
    p_reg->INTENSET = mask;
}

__STATIC_INLINE void nrf_temp_int_disable(NRF_TEMP_Type * p_reg, uint32_t mask)
{
    p_reg->INTENCLR = mask;
}

__STATIC_INLINE bool nrf_temp_int_enable_check(NRF_TEMP_Type const * p_reg,
                                               nrf_temp_int_mask_t   temp_int)
{
    return (bool)(p_reg->INTENSET & temp_int);
}

__STATIC_INLINE uint32_t nrf_temp_task_address_get(NRF_TEMP_Type const * p_reg,
                                                   nrf_temp_task_t       task)
{
    return (uint32_t)((uint8_t *)p_reg + (uint32_t)task);
}

__STATIC_INLINE void nrf_temp_task_trigger(NRF_TEMP_Type * p_reg, nrf_temp_task_t task)
{
    *(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task) = 1;
}

__STATIC_INLINE uint32_t nrf_temp_event_address_get(NRF_TEMP_Type const * p_reg,
                                                    nrf_temp_event_t      event)
{
    return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}

__STATIC_INLINE void nrf_temp_event_clear(NRF_TEMP_Type * p_reg, nrf_temp_event_t event)
{
    *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0;
#if __CORTEX_M == 0x04
    volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
    (void)dummy;
#endif
}

__STATIC_INLINE bool nrf_temp_event_check(NRF_TEMP_Type const * p_reg, nrf_temp_event_t event)
{
    return (bool)*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
}

__STATIC_INLINE int32_t nrf_temp_result_get(NRF_TEMP_Type const * p_reg)
{
    int32_t raw_measurement = p_reg->TEMP;

#if defined(NRF51)
    /* Apply workaround for the nRF51 series anomaly 28 - TEMP: Negative measured values are not represented correctly. */
    if ((raw_measurement & 0x00000200) != 0)
    {
        raw_measurement |= 0xFFFFFC00UL;
    }
#endif

    return raw_measurement;
}

#endif

/** @} */

#ifdef __cplusplus
}
#endif

#endif // NRF_TEMP_H__