/** * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ /****************************************************************************************************************** * * V2022/01/25 * @ Battery ¿¬°á½Ã ºÎÀúÀ½ Ãß°¡ * @ ¿ÍÄ¡µ¶ Àû¿ë * * * V2022/02/10 * @ ºñ»óº§ AES ¾Ïȣȭ * * * * * * * * * * * * * * * * * * * * *******************************************************************************************************************/ #include #include #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_pwm.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "nrf_delay.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_saadc.h" #include "nrf_drv_rtc.h" #include "nrf_drv_wdt.h" #include "main.h" #include "sysmgr.h" #include "dio.h" #include "nrf_power.h" #include "fds.h" #include "nrf_fstorage.h" #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ //#define DEVICE_NAME "Nordic_UART" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 300 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define APP_TIMER_PRESCALER 0 #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define COMPARE_COUNTERTIME (3UL) /**< Get Compare event COMPARE_TIME seconds after the counter starts from 0. */ #define TICK_EVENT_OUTPUT BSP_LED_0 /**< Pin number for indicating tick event. */ #define COMPARE_EVENT_OUTPUT BSP_LED_1 BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ #define TIMER_MS_INTERVAL APP_TIMER_TICKS(25) APP_TIMER_DEF(m_ms_timer_id); APP_TIMER_DEF(wakeup_timer_id); APP_TIMER_DEF(m_our_char_timer_id); nrf_drv_wdt_channel_id m_channel_id; void WdtRunMode(); #define KEEPALIVE_INTERVAL_30_SEC 30*1000 #define KEEPALIVE_INTERVAL_1_MIN 60*1000 #define KEEPALIVE_INTERVAL_30_MIN 30*60*1000 #define KEEPALIVE_INTERVAL_1_HOUR 60*60*1000 #define KEEPALIVE_INTERVAL_1_DAY 24*60*6*1000 #define WAKEUP_TIME_INVERVAL APP_TIMER_TICKS(KEEPALIVE_INTERVAL_1_HOUR) //#define WAKEUP_TIME_INVERVAL APP_TIMER_TICKS(KEEPALIVE_INTERVAL_30_SEC) //#define WAKEUP_TIME_INVERVAL APP_TIMER_TICKS(30*1000) //#define WAKEUP_TIME_INVERVAL APP_TIMER_TICKS(15000) #define OUR_CHAR_TIMER_INTERVAL APP_TIMER_TICKS(1) // 1 ms intervals char DEVICE_NAME[] = {'I', 'C', 'S', 'W', 'E', 'S', 0x44,0x33,0xC0,0xFF,0xFF,0xFF }; /* Flag to check fds initialization. */ static bool volatile m_fds_initialized; /* Array to map FDS events to strings. */ static char const * fds_evt_str[] = { "FDS_EVT_INIT", "FDS_EVT_WRITE", "FDS_EVT_UPDATE", "FDS_EVT_DEL_RECORD", "FDS_EVT_DEL_FILE", "FDS_EVT_GC", }; /* Keep track of the progress of a delete_all operation. */ static struct { bool delete_next; //!< Delete next record. bool pending; //!< Waiting for an fds FDS_EVT_DEL_RECORD event, to delete the next record. } m_delete_all; static void uart_init(void); static void advertising_init(void); static void buttons_leds_init(bool * p_erase_bonds); static void log_init(void); static void power_management_init(void); void wakeup_timer_handler(void * p_context); static void leds_config(void); void Battery_Adc_Read(void); static void idle_state_handle(void); //static void advertising_start(void); static void timer_ms_timeout_handler(void * p_context); static void on_adv_evt(ble_adv_evt_t ble_adv_evt); uint8_t advertising_flag = 0; static void fds_evt_handler(fds_evt_t const * p_evt) { if (p_evt->result == NRF_SUCCESS) { NRF_LOG_INFO("Event: %s received (NRF_SUCCESS)", fds_evt_str[p_evt->id]); } else { NRF_LOG_INFO("Event: %s received (%s)", fds_evt_str[p_evt->id], fds_err_str(p_evt->result)); } switch (p_evt->id) { case FDS_EVT_INIT: if (p_evt->result == NRF_SUCCESS) { m_fds_initialized = true; } break; case FDS_EVT_WRITE: { if (p_evt->result == NRF_SUCCESS) { NRF_LOG_INFO("Record ID:\t0x%04x", p_evt->write.record_id); NRF_LOG_INFO("File ID:\t0x%04x", p_evt->write.file_id); NRF_LOG_INFO("Record key:\t0x%04x", p_evt->write.record_key); } } break; case FDS_EVT_DEL_RECORD: { if (p_evt->result == NRF_SUCCESS) { NRF_LOG_INFO("Record ID:\t0x%04x", p_evt->del.record_id); NRF_LOG_INFO("File ID:\t0x%04x", p_evt->del.file_id); NRF_LOG_INFO("Record key:\t0x%04x", p_evt->del.record_key); } m_delete_all.pending = false; } break; default: break; } } void ReMac_Mapping(); ble_gap_addr_t old_ble_addr; ble_gap_addr_t new_ble_addr; int SysStatus; int SysCounter; static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; APP_PWM_INSTANCE(PWM1,1); // Create the instance "PWM1" using TIMER1. static volatile bool ready_flag; // A flag indicating PWM status. #define SAMPLES_IN_BUFFER 5 static nrf_saadc_value_t m_buffer_pool[SAMPLES_IN_BUFFER]; int SysCounter; ble_advertising_t* p_m_advertising; void SendEmgData(void); void SendTestData(void); void SendRegData(void); void SendAliveData(void); void bsp_event_handler(bsp_event_t event); void saadc_callback(nrf_drv_saadc_evt_t const * p_event) { if (p_event->type == NRF_DRV_SAADC_EVT_DONE) { nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER); } for(uint8_t i = 1 ; i < SAMPLES_IN_BUFFER ; i++) { NRF_LOG_INFO("ADC:%04d\r\n",p_event->data.done.p_buffer[i]); } } void SaadcInit(void) { nrf_saadc_channel_config_t channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN2); nrf_drv_saadc_init(NULL, saadc_callback); nrf_drv_saadc_channel_init(2, &channel_config); } void wdt_event_handler(void) { //bsp_board_leds_off(); NRF_LOG_INFO("<< wdt_event_handler() >>"); } void BootLoad_Reboot() { // memset(SystemManager.StrPeerAddr, 'U', sizeof(SystemManager.StrPeerAddr)); // RegMacDelteAll(); // SaveReceiverMac(SystemManager.StrPeerAddr); WdtRunMode(); nrf_drv_wdt_channel_feed(m_channel_id); nrf_power_gpregret_set(0xB1); NVIC_SystemReset(); } // ALREADY_DONE_FOR_YOU: This is a timer event handler // 1m sec Interrupt static void timer_timeout_handler(void * p_context) { uint32_t err_code; SystemTimer.MS_1++; SystemTimer.UART_LAST_RECV_TIMER++; SystemTimer.SEND_TIMER++; SystemTimer.BUZZER_TIMER--; SystemManager.BleConnectTime++; SystemTimer.TIM_KEY++; SystemTimer.SLEEP_TIMER++; // 500ms ¸¶´Ù SystemManager.BleSendStatus »óÅÂÈ®ÀÎÇÏ¿© ¼ö½Å±â¿¡ µ¥ÀÌŸ Àü¼Û if(SystemManager.BleConnected){ if( SystemManager.BleSendStatus && (SystemTimer.SEND_TIMER%500 ==0)) { NRF_LOG_INFO("SystemManager.BleConnected:%d\n", SystemManager.BleConnected); if( SystemManager.EmgSendButton == BUTTON_EMG ) // EMG { SendEmgData(); SystemTimer.EMG_SEND_RUN = 0; }else if( SystemManager.EmgSendButton == BUTTON_TEST ) // TEST { SendTestData(); SystemTimer.EMG_SEND_RUN = 0; //SystemManager.EmgSendButton = BUTTON_NONE; }else if( SystemManager.EmgSendButton == BUTTON_ALIVE ) // Alive { SendAliveData(); SystemTimer.EMG_SEND_RUN = 0; //SystemManager.EmgSendButton = BUTTON_NONE; }else if( SystemManager.EmgSendButton == BUTTON_REG ) // µî·Ï { SendRegData(); SystemTimer.EMG_SEND_RUN = 0; //SystemManager.EmgSendButton = 11; //ParkPowerOff(); } } }else{ //NRF_LOG_INFO("SystemManager.BleConnected:%d\n", SystemManager.BleConnected); // BLE ADVERTISE RECONNECT START } if( SystemTimer.SEND_TIMER > 3000 ) { NVIC_SystemReset(); // SYSTEM RESET } #if 0 if( SystemManager.EmgSendButton == 3 || SystemManager.EmgSendButton == 11 ) { if( SystemManager.BleConnectTime > 6000 ) { NVIC_SystemReset(); //sd_ble_gap_adv_stop(m_advertising.adv_handle); ///m_conn_handle = BLE_CONN_HANDLE_INVALID; //sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_LOCAL_HOST_TERMINATED_CONNECTION); //sd_ble_gap_adv_stop(m_advertising.adv_handle); } }else{ if( SystemManager.BleConnectTime > 3000 ) { NVIC_SystemReset(); //sd_ble_gap_adv_stop(m_advertising.adv_handle); ///m_conn_handle = BLE_CONN_HANDLE_INVALID; //sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_LOCAL_HOST_TERMINATED_CONNECTION); //sd_ble_gap_adv_stop(m_advertising.adv_handle); } } #endif #if 1 switch(SystemManager.BuzzerType){ case BUZZER_EMG: // EMG if(SystemManager.Batt > BATTERY_LOW_LEVEL){ if( SystemTimer.BUZZER_TIMER == 150 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 50 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); } }else{ if( SystemTimer.BUZZER_TIMER == 500 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 450 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 350 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 300 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 200 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 150 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); } } break; case BUZZER_TEST: //TEST if(SystemManager.Batt > BATTERY_LOW_LEVEL){ if( SystemTimer.BUZZER_TIMER < 10 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); } }else{ // LOW BATTERY (20% Under) if( SystemTimer.BUZZER_TIMER == 500 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 450 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 350 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 300 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 200 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 150 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); } } break; case BUZZER_REG: //µî·Ï if( SystemTimer.BUZZER_TIMER < 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 100 ) { // app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 50 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); } break; case BUZZER_BOOT_LOADER: //BOOT LOAD REBOOT if( SystemTimer.BUZZER_TIMER == 800 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 700 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 500 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 400 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 200 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); BootLoad_Reboot(); } break; case BUZZER_POWER_ON: // ¹åµ¥¸® ¿¬°á½Ã µ¿ÀÛ if( SystemTimer.BUZZER_TIMER == 250 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 200 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); } else if( SystemTimer.BUZZER_TIMER == 150 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); }else if( SystemTimer.BUZZER_TIMER == 100 ) { app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 50 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = BUZZER_NONE; app_pwm_disable(&PWM1); SystemManager.GoSleep = 1; } break; #if 0 case 10: if( SystemTimer.BUZZER_TIMER == 150 ) { //app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER == 100 ) { //app_pwm_channel_duty_set(&PWM1, 0, 50); }else if( SystemTimer.BUZZER_TIMER < 50 ) { app_pwm_channel_duty_set(&PWM1, 0, 0); SystemManager.BuzzerType = 100; app_pwm_disable(&PWM1); } break; #endif } #endif } /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); app_timer_create(&m_our_char_timer_id, APP_TIMER_MODE_REPEATED, timer_timeout_handler); app_timer_create(&m_ms_timer_id, APP_TIMER_MODE_REPEATED, timer_ms_timeout_handler); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { uint32_t i; uint32_t err_code; uint8_t Aes_temp[16]; uint8_t Aes_Dec_temp[16]; switch(p_evt->type){ case BLE_NUS_EVT_RX_DATA: NRF_LOG_RAW_INFO("BLE_NUS_EVT_RX_DATA (AES) => "); for (i = 0; i < p_evt->params.rx_data.length; i++) { NRF_LOG_INFO("0x%02x ", *(p_evt->params.rx_data.p_data+i)); } NRF_LOG_INFO("\n"); for(i=0; i<16; i++){ Aes_temp[i] = *(p_evt->params.rx_data.p_data+i); } WesDecryptEcb( &Aes_temp[0], &Aes_Dec_temp[0] ); NRF_LOG_RAW_INFO("BLE_NUS_EVT_RX_DATA (ORG) => "); for (i=0; i<16; i++) { NRF_LOG_RAW_INFO("0x%02x, ", Aes_Dec_temp[i]); } NRF_LOG_RAW_INFO("\n"); break; case BLE_NUS_EVT_TX_RDY: NRF_LOG_RAW_INFO("BLE_NUS_EVT_TX_RDY ======> \n"); break; case BLE_NUS_EVT_COMM_STARTED: NRF_LOG_RAW_INFO("BLE_NUS_EVT_COMM_STARTED ======> \n"); break; case BLE_NUS_EVT_COMM_STOPPED: NRF_LOG_RAW_INFO("BLE_NUS_EVT_COMM_STOPPED ======> \n"); break; } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); SysStatus = 300; // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: NRF_LOG_INFO("BLE_ADV_EVT_FAST"); SystemManager.BleConnectTime = 0; err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); SysStatus = 200; APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: NRF_LOG_INFO("BLE_ADV_EVT_IDLE"); err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); app_pwm_disable(&PWM1); app_timer_stop(m_ms_timer_id); app_timer_stop(m_our_char_timer_id); NVIC_SystemReset(); app_timer_start(wakeup_timer_id, WAKEUP_TIME_INVERVAL, NULL); err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); //StartRTC(); //app_timer_start(wakeup_timer_id, APP_TIMER_TICKS(15000), NULL); // Enter System ON sleep mode //__WFE(); // Make sure any pending events are cleared //__SEV(); // __WFE(); //sleep_mode_enter(); // err_code = bsp_indication_set(BSP_INDICATE_IDLE); //APP_ERROR_CHECK(err_code); //app_timer_start(wakeup_timer_id, APP_TIMER_TICKS(5000), NULL); // err_code = sd_app_evt_wait(); //SysStatus = 201; //app_uart_close(); //idle_state_handle(); break; default: break; } } int localNameChg = 0; /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_ADV_REPORT : NRF_LOG_INFO("BLE_GAP_EVT_ADV_REPORT "); break; case BLE_GAP_EVT_SCAN_REQ_REPORT: NRF_LOG_INFO("BLE_GAP_EVT_SCAN_REQ_REPORT"); ble_gap_evt_scan_req_report_t * p_scan_req_report_t = (ble_gap_evt_scan_req_report_t *)&p_ble_evt->evt.gap_evt.params.scan_req_report; NRF_LOG_INFO("Peer Address = 0x%02x:%02x:%02x:%02x:%02x:%02x", p_scan_req_report_t->peer_addr.addr[0], p_scan_req_report_t->peer_addr.addr[1], p_scan_req_report_t->peer_addr.addr[2], p_scan_req_report_t->peer_addr.addr[3], p_scan_req_report_t->peer_addr.addr[4], p_scan_req_report_t->peer_addr.addr[5]); NRF_LOG_INFO("RSSI value = %d dBm", p_scan_req_report_t->rssi); SystemManager.PeerAddr[0] = p_scan_req_report_t->peer_addr.addr[0]; SystemManager.PeerAddr[1] = p_scan_req_report_t->peer_addr.addr[1]; SystemManager.PeerAddr[2] = p_scan_req_report_t->peer_addr.addr[2]; SystemManager.PeerAddr[3] = p_scan_req_report_t->peer_addr.addr[3]; SystemManager.PeerAddr[4] = p_scan_req_report_t->peer_addr.addr[4]; SystemManager.PeerAddr[5] = p_scan_req_report_t->peer_addr.addr[5]; sprintf(SystemManager.StrPeerAddr, "%02x%02x%02x%02x%02x%02x", p_scan_req_report_t->peer_addr.addr[0], p_scan_req_report_t->peer_addr.addr[1], p_scan_req_report_t->peer_addr.addr[2], p_scan_req_report_t->peer_addr.addr[3], p_scan_req_report_t->peer_addr.addr[4], p_scan_req_report_t->peer_addr.addr[5]); SystemManager.StrPeerAddr[12] = 0; if( Key1Flag ) break; if( strncmp( SystemManager.StrRegPeerAddr, SystemManager.StrPeerAddr, 12 ) != 0 ) { NRF_LOG_INFO("Reg Receiver Arrived.\n"); break; } NRF_LOG_INFO("Reg Receiver Arrived.\n"); if( localNameChg++ == 2 ) { ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; // memcpy( &DEVICE_NAME[6], SystemManager.RegPeerAddr, 6); // ¿ø»óº¹±¸ BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); sd_ble_gap_adv_stop(p_m_advertising->adv_handle); memcpy( &p_m_advertising->adv_data.adv_data.p_data[14], &DEVICE_NAME[6], 6 ); memcpy( &p_m_advertising->adv_data.scan_rsp_data.p_data[14], &DEVICE_NAME[6], 6 ); //ble_advdata_encode(p_m_advertising->p_adv_data, p_m_advertising->adv_data.adv_data.p_data, &p_m_advertising->adv_data.adv_data.len); sd_ble_gap_adv_set_configure(&p_m_advertising->adv_handle, &p_m_advertising->adv_data, &p_m_advertising->adv_params); sd_ble_gap_adv_start(p_m_advertising->adv_handle, APP_BLE_CONN_CFG_TAG); NRF_LOG_INFO("Local Name Change = %d", err_code); } else if( localNameChg == 2) { } break; case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("<============ BLE_GAP_EVT_CONNECTED =========>"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); SystemManager.BleConnected = 1; SystemTimer.SEND_TIMER = 0; SystemManager.PeerAddr[0] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[0]; SystemManager.PeerAddr[1] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[1]; SystemManager.PeerAddr[2] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[2]; SystemManager.PeerAddr[3] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[3]; SystemManager.PeerAddr[4] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[4]; SystemManager.PeerAddr[5] = p_ble_evt->evt.gap_evt.params.connected.peer_addr.addr[5]; sprintf(SystemManager.StrPeerAddr, "%02x%02x%02x%02x%02x%02x", SystemManager.PeerAddr[0], SystemManager.PeerAddr[1], SystemManager.PeerAddr[2], SystemManager.PeerAddr[3], SystemManager.PeerAddr[4], SystemManager.PeerAddr[5]); SystemManager.StrPeerAddr[12] = 0; break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("<============ BLE_GAP_EVT_DISCONNECTED =========>"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; NVIC_SystemReset(); #if 0 err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); app_pwm_disable(&PWM1); app_timer_stop(m_ms_timer_id); app_timer_stop(m_our_char_timer_id); app_timer_start(wakeup_timer_id, WAKEUP_TIME_INVERVAL, NULL); err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); #endif break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); /* enable DCDC to save current */ err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; NRF_LOG_INFO("BSP_EVENT_HANDLER => %d", event); switch (event) { case BSP_EVENT_DFU: // µé¾î¿ÀÁö ¾ÊÀ½ NRF_LOG_INFO("@@@@@@@ BSP_EVENT_DFU=>%d", event); break; case BSP_EVENT_ADVERTISING_START: // µé¾î¿ÀÁö ¾ÊÀ½ NRF_LOG_INFO("@@@@@@@ BSP_EVENT_ADVERTISING_START=>%d", event); break; case BSP_EVENT_ADVERTISING_STOP: // µé¾î¿ÀÁö ¾ÊÀ½ NRF_LOG_INFO("@@@@@@@ BSP_EVENT_ADVERTISING_STOP=>%d", event); break; case BSP_EVENT_SLEEP: // µé¾î¿ÀÁö ¾ÊÀ½ NRF_LOG_INFO("@@@@@@@ bsp_event_handler() -- BSP_EVENT_SLEEP"); //sleep_mode_enter(); break; case BSP_EVENT_WAKEUP: // µé¾î¿ÀÁö ¾ÊÀ½ NRF_LOG_INFO("@@@@@@@ BSP_EVENT_WAKEUP=>%d", event); advertising_flag = 0; break; case BSP_EVENT_DISCONNECT: NRF_LOG_INFO("bsp_event_handler() -- BSP_EVENT_DISCONNECT"); err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: NRF_LOG_INFO("bsp_event_handler() -- BSP_EVENT_WHITELIST_OFF"); if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; case BSP_EVENT_KEY_1: // event 15 TEST LoadReceiverMac(); Battery_Adc_Read(); err_code = app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); APP_ERROR_CHECK(err_code); //strncpy( DEVICE_NAME, "ICSWES", 6); break; case BSP_EVENT_KEY_2: // event 16 EMG LoadReceiverMac(); //fds_register(fds_evt_handler); //fds_init(); Battery_Adc_Read(); err_code = app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); APP_ERROR_CHECK(err_code); break; default: break; } } /* *@brief Undo the changes that we did when advertising has the timeout. */ void wakeup_timer_handler(void * p_context) { uint32_t err_code; app_timer_stop(wakeup_timer_id); app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); //err_code = ble_advertising_start(BLE_ADV_MODE_FAST); err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); SystemManager.EmgSendButton = BUTTON_ALIVE; NRF_LOG_INFO("==> Alive Send"); SystemTimer.EMG_SEND_RUN = 1; SystemTimer.SEND_TIMER = 0; } static void timer_ms_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); HSDInRun(); } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: NRF_LOG_DEBUG("uart_event_handle -- APP_UART_DATA_READY"); UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: NRF_LOG_DEBUG("uart_event_handle -- APP_UART_COMMUNICATION_ERROR"); APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: NRF_LOG_DEBUG("uart_event_handle -- APP_UART_FIFO_ERROR"); APP_ERROR_HANDLER(p_event->data.error_code); break; case APP_UART_TX_EMPTY: NRF_LOG_DEBUG("uart_event_handle -- APP_UART_TX_EMPTY"); break; case APP_UART_DATA: NRF_LOG_DEBUG("uart_event_handle -- APP_UART_DATA"); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { //p_m_advertising->adv_data.adv_data.p_data = p_m_advertising->enc_advdata; ret_code_t err_code; ble_advertising_init_t init; char plevel = 0xfe; ble_advdata_conn_int_t connParams; connParams.min_conn_interval = 0x20; connParams.max_conn_interval = 0x28; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.advdata.p_tx_power_level = &plevel; init.advdata.p_slave_conn_int = &connParams; // Prepare the scan response manufacturer specific data packet ble_advdata_manuf_data_t manuf_data_response; uint8_t data_response[] = "M"; manuf_data_response.company_identifier = 0x0059; manuf_data_response.data.p_data = data_response; manuf_data_response.data.size = sizeof(data_response); init.srdata.name_type = BLE_ADVDATA_FULL_NAME; init.srdata.p_manuf_specific_data = &manuf_data_response; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); p_m_advertising = &m_advertising; } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); advertising_flag = 1; } static void leds_config(void) { bsp_board_init(BSP_INIT_LEDS); } void Battery_Adc_Read(void) { uint32_t avr = 0; nrf_delay_ms(5); nrf_drv_saadc_sample_convert(NRF_SAADC_INPUT_AIN2, &m_buffer_pool[0]); nrf_delay_ms(5); nrf_drv_saadc_sample_convert(NRF_SAADC_INPUT_AIN2, &m_buffer_pool[1]); nrf_delay_ms(5); nrf_drv_saadc_sample_convert(NRF_SAADC_INPUT_AIN2, &m_buffer_pool[2]); avr = m_buffer_pool[0] + m_buffer_pool[1] + m_buffer_pool[2]; avr /= 3; SystemManager.Batt = (((float)avr*0.708)-200.0)*(100.0/(330.0-200.0)); if(SystemManager.Batt > 100) SystemManager.Batt = 100; NRF_LOG_INFO("Vol:%d -- [%d]\r\n",(int)((float)avr*0.708), SystemManager.Batt); #if 0 if(nrf_drv_saadc_sample_convert(NRF_SAADC_INPUT_AIN2, m_buffer_pool) == NRF_SUCCESS) { // SystemManager.Batt = (((float)m_buffer_pool[0]*0.708)/330.0)*100; SystemManager.Batt = (((float)m_buffer_pool[0]*0.708)-200.0)*(100.0/(330.0-200.0)); if(SystemManager.Batt > 100) SystemManager.Batt = 100; NRF_LOG_INFO("Vol:%d -- [%d]\r\n",(int)((float)m_buffer_pool[0]*0.708), SystemManager.Batt); } #endif } void Buzzer_Select(uint8_t state) { switch(state){ case BUZZER_NONE: break; case BUZZER_EMG: if( SystemManager.BuzzerType == BUZZER_NONE ) { SystemManager.BuzzerType = 1; if(SystemManager.Batt > BATTERY_LOW_LEVEL) SystemTimer.BUZZER_TIMER = 200; else SystemTimer.BUZZER_TIMER = 600; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } break; case BUZZER_TEST: if( SystemManager.BuzzerType == BUZZER_NONE ) { SystemManager.BuzzerType = 2; if(SystemManager.Batt > BATTERY_LOW_LEVEL) SystemTimer.BUZZER_TIMER = 100; else SystemTimer.BUZZER_TIMER = 600; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } break; case BUZZER_REG: if( SystemManager.BuzzerType == BUZZER_NONE ) { SystemManager.BuzzerType = 3; SystemTimer.BUZZER_TIMER = 500; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } break; case BUZZER_BOOT_LOADER: if( SystemManager.BuzzerType == BUZZER_NONE ) { SystemManager.BuzzerType = 4; SystemTimer.BUZZER_TIMER = 1000; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } break; case BUZZER_POWER_ON: if( SystemManager.BuzzerType == BUZZER_NONE ) { SystemManager.BuzzerType = BUZZER_POWER_ON; SystemTimer.BUZZER_TIMER = 300; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } break; } } // ¼Û½Å±â EMG ½ÅÈ£¸¦ Àü¼Û void SendEmgData(void) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; uint16_t length; int i; NRF_LOG_INFO("SendEmgData(%d)", SystemManager.Batt); data_array[0] = COMMAND_TYPE; data_array[1] = 0; data_array[2] = 0; data_array[3] = 0; data_array[4] = 0; data_array[5] = 1; data_array[6] = 1; data_array[7] = 1; data_array[8] = 1; data_array[9] = new_ble_addr.addr[3]; data_array[10] = new_ble_addr.addr[4]; data_array[11] = new_ble_addr.addr[5]; data_array[12] = COMMAND_EMG; data_array[13] = SystemManager.Batt; data_array[14] = VER_HIGH_VALUE; data_array[15] = VER_LOW_VALUE; data_array[16] = 0x3; length = COMMAND_LENGTH; WesEncryptEcb( &data_array[1] ); err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); for( i=0; i<17; i++) { NRF_LOG_RAW_INFO("%02x ", data_array[i]); } NRF_LOG_RAW_INFO("\n"); SystemManager.BleSendStatus = err_code; if ((err_code != NRF_ERROR_RESOURCES)&&(err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND))// (or anything else you want to filter out...) { APP_ERROR_CHECK(err_code); } //SystemTimer.SLEEP_TIMER = 0; //SystemManager.SleepEnter = 1; } // ¼Û½Å±â Test ½ÅÈ£¸¦ Àü¼Û void SendTestData(void) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; uint16_t length; NRF_LOG_INFO("SendTestData()"); data_array[0] = COMMAND_TYPE; data_array[1] = 0; data_array[2] = 0; data_array[3] = 0; data_array[4] = 0; data_array[5] = 1; data_array[6] = 1; data_array[7] = 1; data_array[8] = 1; data_array[9] = new_ble_addr.addr[3]; data_array[10] = new_ble_addr.addr[4]; data_array[11] = new_ble_addr.addr[5]; data_array[12] = COMMAND_TEST; data_array[13] = SystemManager.Batt; data_array[14] = VER_HIGH_VALUE; data_array[15] = VER_LOW_VALUE; data_array[16] = 0x3; length = COMMAND_LENGTH; WesEncryptEcb( &data_array[1] ); err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); SystemManager.BleSendStatus = err_code; if ((err_code != NRF_ERROR_RESOURCES)&&(err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND))// (or anything else you want to filter out...) { APP_ERROR_CHECK(err_code); } } void SendAliveData(void) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; uint16_t length; NRF_LOG_INFO("SendAliveData()"); data_array[0] = COMMAND_TYPE; data_array[1] = 0; data_array[2] = 0; data_array[3] = 0; data_array[4] = 0; data_array[5] = 1; data_array[6] = 1; data_array[7] = 1; data_array[8] = 1; data_array[9] = new_ble_addr.addr[3]; data_array[10] = new_ble_addr.addr[4]; data_array[11] = new_ble_addr.addr[5]; data_array[12] = COMMAND_ALIVE; data_array[13] = SystemManager.Batt; data_array[14] = VER_HIGH_VALUE; data_array[15] = VER_LOW_VALUE; data_array[16] = 0x3; length = COMMAND_LENGTH; WesEncryptEcb( &data_array[1] ); err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); SystemManager.BleSendStatus = err_code; if ((err_code != NRF_ERROR_RESOURCES)&&(err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND))// (or anything else you want to filter out...) { APP_ERROR_CHECK(err_code); } } // µî·Ï¸ðµå void SendRegData(void) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; uint16_t length; NRF_LOG_INFO("SendRegData()"); #if 0 if( SystemManager.BuzzerType == 0 ) { SystemManager.BuzzerType = 3; SystemTimer.BUZZER_TIMER = 500; app_pwm_enable(&PWM1); app_pwm_channel_duty_set(&PWM1, 0, 50); } #endif data_array[0] = COMMAND_TYPE; data_array[1] = 0; data_array[2] = 0; data_array[3] = 0; data_array[4] = 0; data_array[5] = 1; data_array[6] = 1; data_array[7] = 1; data_array[8] = 1; data_array[9] = new_ble_addr.addr[3]; data_array[10] = new_ble_addr.addr[4]; data_array[11] = new_ble_addr.addr[5]; data_array[12] = COMMAND_REG; data_array[13] = SystemManager.Batt; data_array[14] = VER_HIGH_VALUE; data_array[15] = VER_LOW_VALUE; data_array[16] = 0x3; length = COMMAND_LENGTH; WesEncryptEcb( &data_array[1] ); err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); SystemManager.BleSendStatus = err_code; if ((err_code != NRF_ERROR_RESOURCES)&&(err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) && (err_code != NRF_ERROR_NOT_FOUND))// (or anything else you want to filter out...) { APP_ERROR_CHECK(err_code); // RegMacDelteAll(); // SaveReceiverMac(SystemManager.StrPeerAddr); }else{ } } void pwm_ready_callback(uint32_t pwm_id) // PWM callback function { ready_flag = true; } void pwmInit(void) { ret_code_t err_code; app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(370L, 7); //1000L -> 1Khz, 500L -> 2Khz, 370L -> 2.7Khz /* Switch the polarity of the second channel. */ //pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_LOW; pwm1_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_HIGH; /* Initialize and enable PWM. */ err_code = app_pwm_init(&PWM1,&pwm1_cfg,pwm_ready_callback); APP_ERROR_CHECK(err_code); } #define SND_WDT_SLEEP_CONFIG \ { \ .behaviour = (nrf_wdt_behaviour_t)NRFX_WDT_CONFIG_BEHAVIOUR, \ .reload_value = SLEEP_WDT_LIMIT, \ NRFX_WDT_IRQ_CONFIG \ } void WdtRunMode() { ret_code_t err_code; uint64_t time = 10*60*60*1000; uint64_t ticks = (time * 32768ULL) / 1000; // NRFX_ASSERT(ticks <= UINT32_MAX); NRF_LOG_INFO("===>> ticks is [%d]", ticks); nrf_wdt_reload_value_set((uint32_t) ticks); } void WdtSleepMode() { uint32_t err_code; nrf_drv_wdt_config_t config = SND_WDT_SLEEP_CONFIG; err_code = nrf_drv_wdt_init(&config, wdt_event_handler); APP_ERROR_CHECK(err_code); err_code = nrf_drv_wdt_channel_alloc(&m_channel_id); APP_ERROR_CHECK(err_code); nrf_drv_wdt_enable(); } void ReMac_Mapping() { ble_gap_addr_t dd; dd.addr_id_peer = 0; dd.addr_type = BLE_GAP_ADDR_TYPE_PUBLIC; sd_ble_gap_addr_get(&old_ble_addr); dd.addr[0] = IES200_1ST_MAC; dd.addr[1] = IES200_2ST_MAC; dd.addr[2] = IES200_3ST_MAC; dd.addr[3] = old_ble_addr.addr[3]; dd.addr[4] = old_ble_addr.addr[4]; dd.addr[5] = old_ble_addr.addr[5]; sd_ble_gap_addr_set(&dd); sd_ble_gap_addr_get(&new_ble_addr); DEVICE_NAME[9] = dd.addr[3]; DEVICE_NAME[10] = dd.addr[4]; DEVICE_NAME[11] = dd.addr[5]; NRF_LOG_INFO("MAC Address : %02X %02X %02X", dd.addr[3], dd.addr[4], dd.addr[5]); } /**@brief Application main function. */ int main(void) { uint32_t err_code = NRF_SUCCESS; bool erase_bonds; uint8_t flash_buf = 0x00; NRF_LOG_RAW_INFO("\n===========================================================\n\n"); NRF_LOG_RAW_INFO("ICS-200B Program Start --- Ver 1.10 2022/03/24"); NRF_LOG_RAW_INFO("\n===========================================================\n\n"); // Initialize. //uart_init(); SaadcInit(); log_init(); /* Register first to receive an event when initialization is complete. */ (void) fds_register(fds_evt_handler); pwmInit(); err_code = fds_init(); APP_ERROR_CHECK(err_code); timers_init(); HSDInInit(); SystemManager.GpReg = nrf_power_gpregret_get(); buttons_leds_init(&erase_bonds); power_management_init(); ble_stack_init(); ReMac_Mapping(); SystemManager.ResetReason = NRF_POWER->RESETREAS; SystemManager.BleSendStatus = -1; gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); err_code = app_timer_create(&wakeup_timer_id, APP_TIMER_MODE_SINGLE_SHOT, wakeup_timer_handler); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_ms_timer_id, APP_TIMER_MODE_REPEATED, timer_ms_timeout_handler); APP_ERROR_CHECK(err_code); //err_code = app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); //APP_ERROR_CHECK(err_code); //err_code = app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); //APP_ERROR_CHECK(err_code); // Start execution. //printf("\r\nUART started.\r\n"); NRF_LOG_INFO("Debug logging for UART over RTT started."); //advertising_start(); ParkSysInit(); bsp_board_leds_off(); SystemManager.SendRepeat = 0; SystemManager.SendRepeatTimerLimit = 30000; // on time err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); if( SystemManager.GpReg == 0x00 ) { err_code = app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); APP_ERROR_CHECK(err_code); SystemManager.EmgSendButton = BUTTON_EMG; SystemTimer.EMG_SEND_RUN = 1; SystemTimer.SEND_TIMER = 0; Buzzer_Select(BUZZER_POWER_ON); for (;;) { idle_state_handle(); if( SystemManager.GoSleep == 1 ) { app_timer_stop(m_ms_timer_id); app_timer_stop(m_our_char_timer_id); break; } } nrf_power_gpregret_set(0x02); } #if 1 else if( SystemManager.GpReg == 0x04 ) { err_code = app_timer_start(m_ms_timer_id, TIMER_MS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_our_char_timer_id, OUR_CHAR_TIMER_INTERVAL, NULL); APP_ERROR_CHECK(err_code); SystemManager.EmgSendButton = BUTTON_REG; SystemTimer.EMG_SEND_RUN = 1; SystemTimer.SEND_TIMER = 0; Buzzer_Select(BUZZER_POWER_ON); for (;;) { idle_state_handle(); if( SystemManager.GoSleep == 1 ) { app_timer_stop(m_ms_timer_id); app_timer_stop(m_our_char_timer_id); break; } } nrf_power_gpregret_set(0x02); } #endif WdtSleepMode(); nrf_drv_wdt_channel_feed(m_channel_id); // WdtRunMode(); app_timer_start(wakeup_timer_id, WAKEUP_TIME_INVERVAL, NULL); // Wake Up Timer Reset err_code = sd_app_evt_wait(); // jakuja GOTO SLEEP MODE APP_ERROR_CHECK(err_code); // <----------------------------------------------------------------> Battery_Adc_Read(); // Enter main loop. for (;;) { SysCounter++; idle_state_handle(); } } /** * @} */