ser_hal_transport.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /**
  2. * Copyright (c) 2014 - 2020, Nordic Semiconductor ASA
  3. *
  4. * All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without modification,
  7. * are permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this
  10. * list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form, except as embedded into a Nordic
  13. * Semiconductor ASA integrated circuit in a product or a software update for
  14. * such product, must reproduce the above copyright notice, this list of
  15. * conditions and the following disclaimer in the documentation and/or other
  16. * materials provided with the distribution.
  17. *
  18. * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
  19. * contributors may be used to endorse or promote products derived from this
  20. * software without specific prior written permission.
  21. *
  22. * 4. This software, with or without modification, must only be used with a
  23. * Nordic Semiconductor ASA integrated circuit.
  24. *
  25. * 5. Any software provided in binary form under this license must not be reverse
  26. * engineered, decompiled, modified and/or disassembled.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
  29. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
  31. * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  34. * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  35. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  37. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. */
  40. #include <stdbool.h>
  41. #include <string.h>
  42. #include "app_error.h"
  43. #include "sdk_config.h"
  44. #include "ser_config.h"
  45. #include "ser_phy.h"
  46. #include "ser_hal_transport.h"
  47. #if defined(APP_SCHEDULER_WITH_PAUSE) && APP_SCHEDULER_WITH_PAUSE
  48. #include "app_scheduler.h"
  49. #endif
  50. #define NRF_LOG_MODULE_NAME ser_hal_transport
  51. #if SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
  52. #define NRF_LOG_LEVEL SER_HAL_TRANSPORT_CONFIG_LOG_LEVEL
  53. #define NRF_LOG_INFO_COLOR SER_HAL_TRANSPORT_CONFIG_INFO_COLOR
  54. #define NRF_LOG_DEBUG_COLOR SER_HAL_TRANSPORT_CONFIG_DEBUG_COLOR
  55. #else //SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
  56. #define NRF_LOG_LEVEL 0
  57. #endif //SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
  58. #include "nrf_log.h"
  59. NRF_LOG_MODULE_REGISTER();
  60. /**
  61. * @brief States of the RX state machine.
  62. */
  63. typedef enum
  64. {
  65. HAL_TRANSP_RX_STATE_CLOSED = 0,
  66. HAL_TRANSP_RX_STATE_IDLE,
  67. HAL_TRANSP_RX_STATE_RECEIVING,
  68. HAL_TRANSP_RX_STATE_DROPPING,
  69. HAL_TRANSP_RX_STATE_RECEIVED,
  70. HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ,
  71. HAL_TRANSP_RX_STATE_RECEIVED_DROPPING,
  72. HAL_TRANSP_RX_STATE_MAX
  73. }ser_hal_transp_rx_states_t;
  74. /**
  75. * @brief States of the TX state machine.
  76. */
  77. typedef enum
  78. {
  79. HAL_TRANSP_TX_STATE_CLOSED = 0,
  80. HAL_TRANSP_TX_STATE_IDLE,
  81. HAL_TRANSP_TX_STATE_TX_ALLOCATED,
  82. HAL_TRANSP_TX_STATE_TRANSMITTING,
  83. HAL_TRANSP_TX_STATE_TRANSMITTED,
  84. HAL_TRANSP_TX_STATE_MAX
  85. }ser_hal_transp_tx_states_t;
  86. /**
  87. * @brief RX state.
  88. */
  89. static ser_hal_transp_rx_states_t m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
  90. /**
  91. * @brief TX state.
  92. */
  93. static ser_hal_transp_tx_states_t m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
  94. /**
  95. * @brief Transmission buffer.
  96. */
  97. static uint8_t m_tx_buffer[SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE];
  98. /**
  99. * @brief Reception buffer.
  100. */
  101. static uint8_t m_rx_buffer[SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE];
  102. /**
  103. * @brief Callback function handler for Serialization HAL Transport layer events.
  104. */
  105. static ser_hal_transport_events_handler_t m_events_handler = NULL;
  106. /**
  107. * @brief A callback function to be used to handle a PHY module events. This function is called in
  108. * an interrupt context.
  109. */
  110. static void phy_events_handler(ser_phy_evt_t phy_event)
  111. {
  112. uint32_t err_code = 0;
  113. ser_hal_transport_evt_t hal_transp_event;
  114. memset(&hal_transp_event, 0, sizeof (ser_hal_transport_evt_t));
  115. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_TYPE_MAX;
  116. NRF_LOG_INFO("phy evt:%d", phy_event.evt_type);
  117. switch (phy_event.evt_type)
  118. {
  119. case SER_PHY_EVT_TX_PKT_SENT:
  120. {
  121. if (HAL_TRANSP_TX_STATE_TRANSMITTING == m_tx_state)
  122. {
  123. m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTED;
  124. NRF_LOG_INFO("tx free");
  125. err_code = ser_hal_transport_tx_pkt_free(m_tx_buffer);
  126. APP_ERROR_CHECK(err_code);
  127. /* An event to an upper layer that a packet has been transmitted. */
  128. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_TX_PKT_SENT;
  129. m_events_handler(hal_transp_event);
  130. }
  131. else
  132. {
  133. /* Lower layer should not generate this event in current state. */
  134. APP_ERROR_CHECK_BOOL(false);
  135. }
  136. break;
  137. }
  138. case SER_PHY_EVT_RX_BUF_REQUEST:
  139. {
  140. /* An event to an upper layer that a packet is being scheduled to receive or to drop. */
  141. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_RECEIVING;
  142. /* Receive or drop a packet. */
  143. if (phy_event.evt_params.rx_buf_request.num_of_bytes <= sizeof (m_rx_buffer))
  144. {
  145. if (HAL_TRANSP_RX_STATE_IDLE == m_rx_state)
  146. {
  147. m_events_handler(hal_transp_event);
  148. err_code = ser_phy_rx_buf_set(m_rx_buffer);
  149. APP_ERROR_CHECK(err_code);
  150. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVING;
  151. }
  152. else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
  153. {
  154. /* It is OK to get know higher layer at this point that we are going to receive
  155. * a new packet even though we will start receiving when rx buffer is freed. */
  156. m_events_handler(hal_transp_event);
  157. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ;
  158. }
  159. else
  160. {
  161. /* Lower layer should not generate this event in current state. */
  162. APP_ERROR_CHECK_BOOL(false);
  163. }
  164. }
  165. else
  166. {
  167. /* There is not enough memory but packet has to be received to dummy location. */
  168. if (HAL_TRANSP_RX_STATE_IDLE == m_rx_state)
  169. {
  170. m_events_handler(hal_transp_event);
  171. err_code = ser_phy_rx_buf_set(NULL);
  172. APP_ERROR_CHECK(err_code);
  173. m_rx_state = HAL_TRANSP_RX_STATE_DROPPING;
  174. }
  175. else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
  176. {
  177. m_events_handler(hal_transp_event);
  178. err_code = ser_phy_rx_buf_set(NULL);
  179. APP_ERROR_CHECK(err_code);
  180. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED_DROPPING;
  181. }
  182. else
  183. {
  184. /* Lower layer should not generate this event in current state. */
  185. APP_ERROR_CHECK_BOOL(false);
  186. }
  187. }
  188. break;
  189. }
  190. case SER_PHY_EVT_RX_PKT_RECEIVED:
  191. {
  192. if (HAL_TRANSP_RX_STATE_RECEIVING == m_rx_state)
  193. {
  194. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
  195. /* Generate the event to an upper layer. */
  196. hal_transp_event.evt_type =
  197. SER_HAL_TRANSP_EVT_RX_PKT_RECEIVED;
  198. hal_transp_event.evt_params.rx_pkt_received.p_buffer =
  199. phy_event.evt_params.rx_pkt_received.p_buffer;
  200. hal_transp_event.evt_params.rx_pkt_received.num_of_bytes =
  201. phy_event.evt_params.rx_pkt_received.num_of_bytes;
  202. m_events_handler(hal_transp_event);
  203. }
  204. else
  205. {
  206. /* Lower layer should not generate this event in current state. */
  207. APP_ERROR_CHECK_BOOL(false);
  208. }
  209. break;
  210. }
  211. case SER_PHY_EVT_RX_PKT_DROPPED:
  212. {
  213. if (HAL_TRANSP_RX_STATE_DROPPING == m_rx_state)
  214. {
  215. /* Generate the event to an upper layer. */
  216. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_DROPPED;
  217. m_events_handler(hal_transp_event);
  218. m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
  219. }
  220. else if (HAL_TRANSP_RX_STATE_RECEIVED_DROPPING == m_rx_state)
  221. {
  222. /* Generate the event to an upper layer. */
  223. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_DROPPED;
  224. m_events_handler(hal_transp_event);
  225. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
  226. }
  227. else
  228. {
  229. /* Lower layer should not generate this event in current state. */
  230. APP_ERROR_CHECK_BOOL(false);
  231. }
  232. break;
  233. }
  234. case SER_PHY_EVT_RX_OVERFLOW_ERROR:
  235. {
  236. /* Generate the event to an upper layer. */
  237. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
  238. hal_transp_event.evt_params.phy_error.error_type =
  239. SER_HAL_TRANSP_PHY_ERROR_RX_OVERFLOW;
  240. m_events_handler(hal_transp_event);
  241. break;
  242. }
  243. case SER_PHY_EVT_TX_OVERREAD_ERROR:
  244. {
  245. /* Generate the event to an upper layer. */
  246. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
  247. hal_transp_event.evt_params.phy_error.error_type =
  248. SER_HAL_TRANSP_PHY_ERROR_TX_OVERREAD;
  249. m_events_handler(hal_transp_event);
  250. break;
  251. }
  252. case SER_PHY_EVT_HW_ERROR:
  253. {
  254. /* Generate the event to an upper layer. */
  255. hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
  256. hal_transp_event.evt_params.phy_error.error_type =
  257. SER_HAL_TRANSP_PHY_ERROR_HW_ERROR;
  258. hal_transp_event.evt_params.phy_error.hw_error_code =
  259. phy_event.evt_params.hw_error.error_code;
  260. if (HAL_TRANSP_TX_STATE_TRANSMITTING == m_tx_state)
  261. {
  262. m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTED;
  263. err_code = ser_hal_transport_tx_pkt_free(phy_event.evt_params.hw_error.p_buffer);
  264. APP_ERROR_CHECK(err_code);
  265. #if defined(APP_SCHEDULER_WITH_PAUSE) && APP_SCHEDULER_WITH_PAUSE
  266. app_sched_resume();
  267. #endif
  268. /* An event to an upper layer that a packet has been transmitted. */
  269. }
  270. else if (HAL_TRANSP_RX_STATE_RECEIVING == m_rx_state)
  271. {
  272. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
  273. err_code = ser_hal_transport_rx_pkt_free(phy_event.evt_params.hw_error.p_buffer);
  274. APP_ERROR_CHECK(err_code);
  275. }
  276. m_events_handler(hal_transp_event);
  277. break;
  278. }
  279. default:
  280. {
  281. APP_ERROR_CHECK_BOOL(false);
  282. break;
  283. }
  284. }
  285. }
  286. void ser_hal_transport_reset(void)
  287. {
  288. m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
  289. m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
  290. }
  291. uint32_t ser_hal_transport_open(ser_hal_transport_events_handler_t events_handler)
  292. {
  293. uint32_t err_code = NRF_SUCCESS;
  294. if ((HAL_TRANSP_RX_STATE_CLOSED != m_rx_state) || (HAL_TRANSP_TX_STATE_CLOSED != m_tx_state))
  295. {
  296. err_code = NRF_ERROR_INVALID_STATE;
  297. }
  298. else if (NULL == events_handler)
  299. {
  300. err_code = NRF_ERROR_NULL;
  301. }
  302. else
  303. {
  304. /* We have to change states before calling lower layer because ser_phy_open() function is
  305. * going to enable interrupts. On success an event from PHY layer can be emitted immediately
  306. * after return from ser_phy_open(). */
  307. m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
  308. m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
  309. m_events_handler = events_handler;
  310. /* Initialize a PHY module. */
  311. err_code = ser_phy_open(phy_events_handler);
  312. if (NRF_SUCCESS != err_code)
  313. {
  314. m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
  315. m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
  316. m_events_handler = NULL;
  317. if (NRF_ERROR_INVALID_PARAM != err_code)
  318. {
  319. err_code = NRF_ERROR_INTERNAL;
  320. }
  321. }
  322. }
  323. return err_code;
  324. }
  325. void ser_hal_transport_close(void)
  326. {
  327. /* Reset generic handler for all events, reset internal states and close PHY module. */
  328. ser_phy_interrupts_disable();
  329. m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
  330. m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
  331. m_events_handler = NULL;
  332. ser_phy_close();
  333. }
  334. uint32_t ser_hal_transport_rx_pkt_free(uint8_t * p_buffer)
  335. {
  336. NRF_LOG_INFO("rx pkt free:%d", p_buffer);
  337. uint32_t err_code = NRF_SUCCESS;
  338. ser_phy_interrupts_disable();
  339. if (NULL == p_buffer)
  340. {
  341. err_code = NRF_ERROR_NULL;
  342. }
  343. else if (p_buffer != m_rx_buffer)
  344. {
  345. err_code = NRF_ERROR_INVALID_ADDR;
  346. }
  347. else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
  348. {
  349. m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
  350. }
  351. else if (HAL_TRANSP_RX_STATE_RECEIVED_DROPPING == m_rx_state)
  352. {
  353. m_rx_state = HAL_TRANSP_RX_STATE_DROPPING;
  354. }
  355. else if (HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ == m_rx_state)
  356. {
  357. err_code = ser_phy_rx_buf_set(m_rx_buffer);
  358. if (NRF_SUCCESS == err_code)
  359. {
  360. m_rx_state = HAL_TRANSP_RX_STATE_RECEIVING;
  361. }
  362. else
  363. {
  364. err_code = NRF_ERROR_INTERNAL;
  365. }
  366. }
  367. else
  368. {
  369. /* Upper layer should not call this function in current state. */
  370. err_code = NRF_ERROR_INVALID_STATE;
  371. }
  372. ser_phy_interrupts_enable();
  373. return err_code;
  374. }
  375. uint32_t ser_hal_transport_tx_pkt_alloc(uint8_t * * pp_memory, uint16_t * p_num_of_bytes)
  376. {
  377. uint32_t err_code = NRF_SUCCESS;
  378. if ((NULL == pp_memory) || (NULL == p_num_of_bytes))
  379. {
  380. err_code = NRF_ERROR_NULL;
  381. }
  382. else if (HAL_TRANSP_TX_STATE_CLOSED == m_tx_state)
  383. {
  384. err_code = NRF_ERROR_INVALID_STATE;
  385. }
  386. else if (HAL_TRANSP_TX_STATE_IDLE == m_tx_state)
  387. {
  388. m_tx_state = HAL_TRANSP_TX_STATE_TX_ALLOCATED;
  389. *pp_memory = &m_tx_buffer[0];
  390. *p_num_of_bytes = (uint16_t)sizeof (m_tx_buffer);
  391. }
  392. else
  393. {
  394. err_code = NRF_ERROR_NO_MEM;
  395. }
  396. return err_code;
  397. }
  398. uint32_t ser_hal_transport_tx_pkt_send(const uint8_t * p_buffer, uint16_t num_of_bytes)
  399. {
  400. uint32_t err_code = NRF_SUCCESS;
  401. /* The buffer provided to this function must be allocated through ser_hal_transport_tx_alloc()
  402. * function - this assures correct state and that correct memory buffer is used. */
  403. if (NULL == p_buffer)
  404. {
  405. err_code = NRF_ERROR_NULL;
  406. }
  407. else if (0 == num_of_bytes)
  408. {
  409. err_code = NRF_ERROR_INVALID_PARAM;
  410. }
  411. else if (p_buffer != m_tx_buffer)
  412. {
  413. err_code = NRF_ERROR_INVALID_ADDR;
  414. }
  415. else if (num_of_bytes > sizeof (m_tx_buffer))
  416. {
  417. err_code = NRF_ERROR_DATA_SIZE;
  418. }
  419. else if (HAL_TRANSP_TX_STATE_TX_ALLOCATED == m_tx_state)
  420. {
  421. ser_phy_interrupts_disable();
  422. err_code = ser_phy_tx_pkt_send(p_buffer, num_of_bytes);
  423. if (NRF_SUCCESS == err_code)
  424. {
  425. m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTING;
  426. }
  427. else
  428. {
  429. if (NRF_ERROR_BUSY != err_code)
  430. {
  431. err_code = NRF_ERROR_INTERNAL;
  432. }
  433. }
  434. ser_phy_interrupts_enable();
  435. }
  436. else
  437. {
  438. err_code = NRF_ERROR_INVALID_STATE;
  439. }
  440. return err_code;
  441. }
  442. uint32_t ser_hal_transport_tx_pkt_free(uint8_t * p_buffer)
  443. {
  444. uint32_t err_code = NRF_SUCCESS;
  445. if (NULL == p_buffer)
  446. {
  447. err_code = NRF_ERROR_NULL;
  448. }
  449. else if (p_buffer != m_tx_buffer)
  450. {
  451. err_code = NRF_ERROR_INVALID_ADDR;
  452. }
  453. else if ((HAL_TRANSP_TX_STATE_TX_ALLOCATED == m_tx_state) ||
  454. (HAL_TRANSP_TX_STATE_TRANSMITTED == m_tx_state))
  455. {
  456. /* Release TX buffer for use. */
  457. m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
  458. }
  459. else
  460. {
  461. err_code = NRF_ERROR_INVALID_STATE;
  462. }
  463. return err_code;
  464. }