s13x_nrf5x_7.2.0 migration document

Introduction to the s13x_nrf5x migration document

About the document

This document describes how to migrate to new versions of the s130_nrf51 and s132_nrf52 SoftDevices. The s130_nrf51 and s132_nrf52 release notes should be read in conjunction with this document.

For each version, we have the following sections:

® "Required changes" describes the changes that need to be done in the application when migrating from an older version of the SoftDevice.
® "New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Note: Not all new functionality may be covered; the release notes will contain a full list of

new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the previous version, follow the instructions in that section. To migrate between
versions that are more than one version apart, follow the migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to version 5.1.0 from version 5.0.0, then follow the instructions to migrate to version 5.2.0 from version 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

Nordic Semiconductor Page 1 of 79

s132 nrf52_7.2.0

This section describes how to use the new features of s132_nrf52_7.2.0 when migrating from s132_nrf52_7.0.1. As with all minor releases, the s132_nrf52_7.2.0 is binary compatible with s132_nrf52_7.0.1.

New functionality

Efficient discovery of 128-bit UUIDs
By default, any discovered 128-bit UUIDs that are not present in the Vendor Specific UUID table, will have the bl e_uui d_t : : t ype set to BLE_UUI D_TYPE_UNKNOWN.

To change this default behavior and enable the automatic insertion of discovered 128-bit UUIDs to the Vendor Specific UUID table, the following option can be used:

..

Page 2 of 79

Nordic Semiconductor

s132 nrf52_7.0.1

This section describes how to use the new features of s132_nrf52_8.0.0 when migrating from s132_nrf52_7.0.1. Due to API changes between these versions, applications have to be to be recompiled.

Required changes

The application can no longer use the option BLE_COVMON_OPT_ADV_SCHED CFG. The advertiser will always use improved scheduling. This was previously defined as ADV_SCHED CFG_| MPROVED.
The macros NRF_SOC_APP_PPI _CHANNELS_SD_DI SABLED_MSK, NRF_SOC _APP_PPI _CHANNELS SD ENABLED MSK, NRF_SOC_APP_PPI_GROUPS_SD_DISABLED_MSK, and NRF_SOC APP_PPI _GRO

UPS_SD ENABLED MSK are removed. The application can use the macros NRF_SOC_SD PPl _CHANNELS SD ENABLED MSKand NRF_SOC _SD PPl _GROUPS_SD ENABLED MSK to deduce the PPI channels
and groups available to the application.

New functionality

Connection event trigger

When enabled, this feature will trigger a task at the start of connection events. The application can configure the SoftDevice to trigger a task every N connection events starting from a given connection event
counter.

API Updates

® sd_bl e _gap_next_conn_evt _counter_get (). This API can be used to retrieve the next connection event counter.
® sd_ble _gap_conn_evt_trigger_start(),sd_ble_gap_conn_evt_trigger_stop().These APIs can be used to start and stop triggering a task on connection events.

Usage

The code snippet below illustrates how to configure the SoftDevice to toggle the GPIO pin 13, every second connection event, starting at connection event 10. The code snippet stops the connection event trigger
when the connection parameters are updated.

void on_ble evt(const ble evt t * p _ble _evt)

{
if (p_ble_evt->header.evt_id == BLE_GAP_EVT_CONNECTED)

{

uintl16_t conn_handl e = p_ble_evt->evt.gap_evt.conn_handl e;

Nordic Semiconductor Page 3 of 79

bl e _gap_conn_event trigger _t trigger_ parans;
trigger_params. ppi _ch_id = 0;

trigger_params.task _endpoi nt = &NRF_GPI OTE- >TASKS QUT[0] ;
trigger_parans.conn_evt_counter_start = 10;
trigger_parans. period_in_events = 2;

sd_ble_gap_conn_evt _trigger_start(conn_handl e, &trigger_parans);
}
else if (p_ble_evt->header.evt id == BLE GAP_EVT_CONN_PARAM UPDATE)
{
uint16_t conn_handl e = p_ble_evt->evt.gap_evt.conn_handl e;
sd_bl e_gap_conn_evt _trigger_stop(conn_handl e);
}
}

i nt mai n(voi d)
{
/* Configure GPlIOTE */
NRF_GPI O >DI RSET = (1 << 13);
NRF_GPI OTE- >CONFI G 0] = (GPI OTE_CONFI G_POLARI TY_Toggl e << GPI OTE_CONFI G_POLARI TY_Pos)
| (13 << GPlI OTE_CONFI G_PSEL_Pos)
| (GPI OTE_CONFI G MODE _Task << GPI OTE_CONFI G_ MODE_Pos) ;

/* Enabl e the BLE Stack and connect device */
sd_ble_enable(...);

sd_bl e _gap_connect (...);

[...]

Nordic Semiconductor Page 4 of 79

Configurable inclusion of Central Address Resolution (CAR) characteristic and Peripheral Preferred Connection Parameters
(PPCP)

APl Updates

® BLE GAP_CFG _CAR | NCL_CONFI G. This allows the application to include or exclude the CAR characteristic from the GAP Service.
® BLE GAP_CFG _PPCP_| NCL_CONFI G This allows the application to include or exclude the PPCP characteristic from the GAP Service.

For the above inclusion configuration APIs, the application can use:
® BLE GAP_CHAR I NCL_CONFI G | NCLUDE: The characteristic is included.
® BLE GAP_CHAR | NCL_CONFI G EXCLUDE W TH_SPACE: The characteristic is excluded, but the SoftDevice will reserve the attribute handles which are otherwise used for this characteristic.
® BLE GAP_CHAR I NCL_CONFI G EXCLUDE W THOUT _SPACE: The characteristic is excluded.

When CAR is excluded and the SoftDevice is configured to support the central role:

® |tis not possible to distribute own IRK.
® |tis not possible to enable privacy.

Usage

The code snippet below illustrates how to configure the SoftDevice to exclude both CAR and PPCP from the GAP Service.

Nordic Semiconductor Page 5 of 79

int mai n(void)

{
ble cfg_t cfg;

/* Exclude CAR from GAP service, but reserve the ATT Handles that will otherw se be used up by CAR */
cfg.gap_cfg.car_include_cfg = BLE GAP_CHAR | NCL_CONFI G_EXCLUDE W TH_SPACE;
sd_ble_cfg _set(BLE GAP_CFG CAR I NCL_CONFI G &cfg, ..);

/* Exclude PPCP from GAP service, but reserve the ATT Handles that will otherw se be used up by PPCP. */
cfg. gap_cfg. ppcp_i ncl ude_cfg= BLE_GAP_CHAR | NCL_CONFI G_EXCLUDE_W TH_SPACE;
sd_ble _cfg set(BLE GAP_CFG PPCP_I NCL_CONFI G &cfg, ..);

/* Enable the BLE Stack. */
sd_ble_enable(...);

Nordic Semiconductor Page 6 of 79

s132_nrf52_6.1.0

This section describes how to use the new features of s132_nrf52_6.1.0 when migrating from s132_nrf52_6.0.0. As with all minor releases, the s132_nrf52_6.1.0 is binary compatible with s132_nrf52_6.0.0.
Hence existing applications running on s132_nrf52_6.0.0 need not be recompiled unless the new features are needed. Advertising extensions are now fully tested and qualified features.

New functionality

Support for advertising with up to 255 bytes of advertising data

The SoftDevice now supports advertising up to 255 bytes of advertising data. The macro BLE_GAP_ADV_SET_DATA_SI ZE EXTENDED MAX_SUPPORTED is added to indicate this. For connectable extended
advertising, the maximum advertising data size is 238 bytes, as indicated by BLE_GAP_ADV_SET_DATA_SI ZE _EXTENDED CONNECTABLE_NAX_SUPPORTED.

Usage

Extended Non-Connectable Non-Scannable Advertising with 255 bytes of Advertising data
static uint8_t raw adv_data_data_buffer[BLE GAP_ADV_SET DATA_ S| ZE_EXTENDED MAX_ SUPPORTED ;

static ble gap_adv_data t adv_data =

{

.adv_data.p_data = raw _adv_dat a_dat a_buffer,
.adv_data.len = sizeof (raw _adv_dat a_data_buffer)

b

i nt mai n(voi d)

{
uint8_t adv_handl e = BLE_GAP_ADV_SET_HANDLE NOT_SET;

bl e _gap_adv_parans_t adv_parans =

{

Nordic Semiconductor Page 7 of 79

. properties=

{
.type=BLE_GAP_ADV_TYPE EXTENDED NONCONNECTABLE NONSCANNABLE UNDI RECTED
1
.interval = BLE_GAP_ADV_| NTERVAL _MAX,
.duration = BLE_GAP_ADV_TI MEQUT_LI M TED_MAX,
. channel _mask = {0},
. max_adv_evts = 0,
.filter_policy = BLE_GAP_ADV_FP_ANY,
.primary_phy = BLE_GAP_PHY_1MBPS,
. secondary_phy = BLE_GAP_PHY_ 2MBPS,

b
/* Enabl e the BLE Stack */

sd_ble_enable(...);

[...]
sd_bl e _gap_adv_set configure(&dv_handl e, &dv_data, &adv_parans);

/[* Start advertising */
sd_bl e_gap_adv_start (adv_handl e, BLE CONN_CFG TAG DEFAULT);

Extended Scannable Advertising with 255 bytes of Scan Response data

static uint8_ t raw scan_rsp_data_buffer[BLE GAP_ADV_SET_DATA S| ZE EXTENDED NMAX_SUPPORTED] ;
static ble_gap_adv_data_t adv_data =

{

Nordic Semiconductor Page 8 of 79

.scan_rsp_data.p_data =

.scan_rsp_data.len

H

int nma

{

uint8 t adv_handl e

{

{
}

i n(voi d)

properties=

. type=BLE_GAP_ADV_TYPE_EXTENDED NONCONNECTABLE_SCANNABLE_UNDI RECTED

i nterval

.duration

. channel _mask
. max_adv_evts

.filter_policy
.primary_phy

. secondary_phy

H

= siz

raw scan_rsp_data buffer,
eof (raw_scan_rsp_data_buffer)

BLE GAP_ADV_SET_HANDLE NOT_SET;
bl e_gap_adv_parans_t adv_parans =

BLE_GAP_ADV_| NTERVAL_MAX,

= BLE_GAP_ADV_TI MEOUT LI M TED_MAX,

{0},

:0,

BLE_GAP_ADV_FP_ANY,

= BLE_GAP_PHY_1MBPS,

/* Enable the BLE Stack */

sd_ble enable(...);

[...
sd b

]

BLE_GAP_PHY_2MBPS

| e_gap_adv_set configure(&dv_handl e, &adv_data, &adv_parans);

/[* Start advertising */
sd_bl e_gap_adv_start (adv_handl e, BLE CONN_CFG TAG DEFAULT);

[..

Nordic Semiconductor

-]

Page 9 of 79

Support for receiving up to 255 bytes of advertising data
The SoftDevice now supports receiving up to 255 bytes of advertising data as a scanner. The macro BLE_GAP_SCAN_BUFFER_EXTENDED MAX_SUPPORTED is added to indicate this.

Usage

Nordic Semiconductor Page 10 of 79

static uint8 t raw scan_buffer[BLE GAP_SCAN BUFFER EXTENDED MAX SUPPORTED] ;
static ble data t scan_buffer =

{

.p_data = raw _scan_buffer,
.len = sizeof (raw_scan_buffer)
s

static uintl1l6_t scan_wi ndow = Ox00AOQ; /* Corresponds to 100 ns */

int mai n(voi d)

{
bl e_gap_scan_parans_t scan_parans=

{
. ext ended = 1, /* Enabl e extended scanning to be able to receive |large advertising data. */
. scan_phys = BLE_GAP_PHY_1MBPS,
.timeout = BLE_GAP_SCAN_TI MEQUT_UNLI M TED,
. Wi ndow = scan_w ndow,
.interval = BLE_GAP_SCAN | NTERVAL MAX,
.channel _mask = {0}, /* Scanning on all the primary channels */
.filter_policy = BLE GAP_SCAN FP_ACCEPT ALL

b

/* Enable the BLE Stack */
sd _ble enable(...);

/* Start scanning */
sd_bl e_gap_scan_start (&scan_parans, &scan_buffer);

[...]

Nordic Semiconductor Page 11 of 79

API for removing a Vendor Specific base UUID

Using sd_bl e_uui d_vs_renove(), the application can now remove a Vendor Specific base UUID that has been added with sd_bl e_uui d_vs_add() . This allows the application to reuse memory allocated
for Vendor Specific base UUIDs. The application must provide a pointer to the UUID type to be removed as an input parameter to sd_bl e_uui d_vs_renpve(). The UUID type must not be in use by the ATT
Server. A limitation with the current implementation is that the input parameter can only point to BLE_UUI D_TYPE_UNKNOWN or the last added UUID type.

API to enable or disable extended RC calibration

Extended RC calibration is a new SoftDevice feature that performs additional RC oscillator drift detection and calibration when the SoftDevice is acting as a peripheral and the RC oscillator is used as the
SoftDevice clock source. The extended RC calibration is performed in addition to the periodic calibration which is configured when calling sd_sof t devi ce_enabl e() . If using only peripheral connections, the
periodic calibration can then be configured with a much longer interval because the peripheral can detect and adjust automatically to clock drift and calibrate when required.

The extended RC calibration is enabled by default. The option BLE_COVMON_OPT_EXTENDED RC CAL is added to the BLE option API, allowing the application to enable or disable this feature. When using this
API, setbl e_common_opt _t::extended_rc_cal ::enabl e to'l'to enable, or to '0' to disable.

API to get the advertiser Bluetooth device address

A new API sd_bl e_gap_adv_addr _get () enables the application to get the local Bluetooth device address that is used by the advertiser. The application must provide the advertising handle of the advertiser
for the adv_handl e input parameter, and a pointer to an address structure p_addr to be used as the output parameter. The function may only be called when advertising is enabled.

Note: If privacy is enabled, the SoftDevice will generate a new private address every bl e_gap_pri vacy_parans_t:: private_addr_cycl e_s, which is configured when calling sd_bl e_gap_pri vacy_se
t () . Depending on when sd_ble_gap_adv_addr_get() is called, the returned address may not be the address that is currently used by the advertiser.

Hardware resource usage API

The API now contains new macros to inform the application about the hardware resources used by the SoftDevice.

® The macro __NRF_NVI C_SD | RQ PRI CSindicates the interrupt priority levels used by the SoftDevice.

® The macro __NRF_NVI C_APP_I| RQ PRI CSindicates the interrupt priority levels available to the application.

® The macros NRF_SOC _SD PPl _CHANNELS SD ENABLED MSKand NRF_SOC SD PPl _CHANNELS SD DI SABLED MsK can be used to identify the PPI channels reserved by the SoftDevice when the
SoftDevice is enabled or disabled respectively.

® The macros NRF_SCC_APP_PPI _CHANNELS SD ENABLED MSK and NRF_SOC_APP_PPI _CHANNELS SD DI SABLED_IMSK can be used to identify the PPI channels available to the application when
the SoftDevice is enabled or disabled respectively.

® The macros NRF_SOC_SD_PPI _GROUPS_SD_ENABLED_MSK and NRF_SCOC_SD_PPI _GROUPS_SD DI SABLED_NMsK can be used to identify the PPI groups reserved by the SoftDevice when the
SoftDevice is enabled or disabled respectively.

® The macros NRF_SOC_APP_PPI _GROUPS_SD ENABLED MSKand NRF_SOC_APP_PPI _GROUPS_SD DI SABLED_MSK can be used to identify the PPl groups available to the application when the
SoftDevice is enabled or disabled respectively.

Nordic Semiconductor Page 12 of 79

Other additions to the API

® The macro SD_VARI ANT_I Dindicates the SoftDevice variant.
® The macro SD_FLASH_SI ZE indicates the amount of flash memory used by the SoftDevice.

s132_nrf52_6.0.0

This section describes how to migrate to s132_nrf52_6.0.0 from s132_nrf52_5.1.0.

Notes:

® s5132_nrf52_6.0.0 has changed the APl compared to s132_nrf52_5.1.0 which requires applications to be recompiled.
® 5132 nrf52_6.0.0 includes some features that are not Bluetooth qualified. For more information, see the release notes.

New functionality

Quality of Service (QoS) channel survey

This feature provides measurements of the energy levels on the Bluetooth Low Energy channels to the application. The application can use this information to determine the noise floor on a per channel basis
and set an adapted channel map to avoid busy channels.

When the feature is enabled, BLE_GAP_EVT_QOS_CHANNEL SURVEY_REPORT events will periodically report the measured energy levels for each channel. The channel energy is reported in bl e_gap_evt _qos
_channel _survey_report_t::channel _energy[BLE_GAP_CHANNEL_COUNT] , indexed by the Channel Index. The SoftDevice will attempt to measure energy levels and deliver reports with the average

interval specified in i nt erval _us.

Note: To make the channel survey feature available to the application, bl e_gap_cfg_rol e_count _t:: qos_channel _survey_rol e_avai | abl e must be set. This is done using the sd_bl e_cfg_set () A
PI.

The event structures for BLE_GAP_EVT_RSSI _ CHANGED and BLE_GAP_EVT_ADV_REPORT have been changed to provide the application the channel number for reported Received Signal Strength Indication
(RSSI) measurements. For more information, see Updated RSSI API in the Required changes section.

APl Updates

® Anew Boolean flag, bl e_gap_cfg_rol e_count _t::qos_channel _survey_rol e_avai | abl e, must be set in the SoftDevice role configuration API to make the channel survey available for the
application.

Nordic Semiconductor Page 13 of 79

® Two new SV calls have been added to start and stop the channel survey:
® sd_bl e _gap_gos_channel _survey_start()
® sd_bl e_gap_qgos_channel _survey_stop()

Usage
/* Make Channel Survey feature available to the application */ i
ble cfg_t cfg;
cfg.rol e _count.gos_channel _survey role _available = 1;
sd ble cfg set(..., &fg, ...);
/* Start receiving channel survey continuously. */ i
uint32_t errcode;
errcode = sd_bl e_gap_qos_channel _survey_start (BLE_GAP_QOS CHANNEL_ SURVEY | NTERVAL _CONTI NUQUS) ;

int8 t rssi;
/* A new nmeasurenent is ready. */
case BLE_GAP_EVT_QOS_CHANNEL_ SURVEY_ REPORT:

{
for (i = 0; i < BLE_GAP_CHANNEL_COUNT; i ++)
{
rssi = p_ble_evt->evt.gap_evt. parans. qos_channel _survey_report.channel _energy[i];
}
}

Nordic Semiconductor Page 14 of 79

/* Stop receiving channel survey. */
errcode = sd_bl e_gap_qgos_channel _survey_st op() §

Advertising Extensions

The LE Advertising Extensions feature has limited support in this SoftDevice that can be enabled with the new advertiser and scanner API. The feature may not function as specified, and may contain issues. For
more information, see the release notes.

Extended Advertiser

Extended advertising can be enabled by assigning an _ EXTENDED _ advertising type to the bl e_gap_adv_parans_t: : properties::type.
The extended advertising types are:

BLE_GAP_ADV_TYPE_EXTENDED CONNECTABLE_NONSCANNABLE_UNDI RECTED
BLE_GAP_ADV_TYPE_EXTENDED CONNECTABLE_NONSCANNABLE_DI RECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_UNDI RECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_DI RECTED
BLE_GAP_ADV_TYPE_EXTENDED_ NONCONNECTABLE_NONSCANNABLE_UNDI RECTED
BLE_GAP_ADV_TYPE_EXTENDED NONCONNECTABLE_NONSCANNABLE_DI RECTED

New parameters in the API that are relevant for extended advertising:

® ble_gap_adv_parans_t::properties::anonynous
® |f this flag is set to 1, the advertiser's address will be omitted from all PDUs. This is only available for extended advertising event types.
® ble_gap_adv_parans_t::primary_phy
® Indicates the PHY on which the primary advertising channel packets are transmitted.
® For extended advertising event types, this can be set to BLE_GAP_PHY_AUTO, BLE_GAP_PHY_1MBI T, or BLE_GAP_PHY_CODED if supported by the SoftDevice.
® bl e_gap_adv_parans_t::secondary_phy
® [ndicates the PHY on which the auxiliary PDUs will be sent.
® Can be setto BLE_GAP_PHY_AUTO, BLE_GAP_PHY_1MBPS, BLE_GAP_PHY_2MBPS, or BLE_GAP_PHY_CODED if supported by the SoftDevice.
® ble_gap_adv_parans_t::set_id
® This value is used as the Advertising Set ID in the AdvDatalnfo field of the PDU.

Extended Scanner

Nordic Semiconductor Page 15 of 79

Scanning of extended advertising PDUs can be enabled by setting the bl e_gap_scan_par ans_t : : ext ended flag to 1 for the scan parameters provided to sd_bl e_gap_scan_start (). If setto 1, both
legacy and extended advertising PDUs will be scanned. If the flag is set to 0, all extended advertising PDUs will be ignored by the scanner. Correspondingly, to connect to a peer that is advertising with extended
advertising PDUs, set the bl e_gap_scan_parans_t : : ext ended flag to 1 for the scan parameters provided to sd_bl e_gap_connect ().

New parameters in the API that are relevant for extended scanning:

® ble_gap_scan_parans_t::report_inconplete_evts
® This option is currently not supported.
bl e_gap_evt _adv_report_t::type::extended_pdu
® Will be set to 1 if an extended advertising set is received.
bl e_gap_evt _adv_report_t::tx_power
® The transmit power reported by the advertising in the last packet header received. The TX power field is present only in some extended advertising PDUs.
® ble_gap_evt_adv_report_t::aux_pointer
® The offset and PHY of the next advertising packet in this extended advertising set.
® This field will only be setif bl e_gap_evt _adv_report _t::type::statusissetto BLE GAP_ADV_DATA STATUS | NCOVPLETE_MORE_DATA.
® ble_gap_evt_adv_report_t::set_id
® Set ID of the received advertising data. This is only present in some extended advertising PDUs.
bl e_gap_evt_adv_report_t::data_id
® Data ID of the received advertising data. This is only present in some extended advertising PDUs.

Write to SoftDevice protected registers

Anew API, sd_protected_register_wite(), has been added to give the application the possibility to write to a register that is write-protected by the SoftDevice. A write-protected peripheral shall only be
accessed through the SoftDevice APl when the SoftDevice is enabled.

The new API supports writing to the Block Protection (BPROT) peripheral. The application can use sd_pr ot ect ed_regi ster _wite() instead of sd_f| ash_prot ect () to set the flash protection
configuration registers.

/* Ad APl : */
errcode = sd _flash protect(val ue0, valuel, value2, val ue3)

/* New API: */
errcode = sd_protected_register_wite(& NRF_BPROT->CONFI Q0), val ue0)

Nordic Semiconductor Page 16 of 79

errcode = sd _protected register_wite(& NRF_BPROT->CONFI Gl), val uel)
errcode sd_protected_register_wite(& NRF_BPROT->CONFI &), val ue2)
errcode sd_protected regi ster_wite(& NRF_BPROT- >CONFI G3), val ue3)

Required changes

Updated advertiser API

sd_bl e_gap_adv_dat a_set () has been removed.
A new API, sd_bl e_gap_adv_set _confi gure(), has been added with the following functionalities:

® Configuring and updating the advertising parameters of an advertising set.
® Setting, clearing, or updating advertising and scan response data.

Note: The advertising data must be kept alive in memory until advertising is terminated. Not doing so will lead to undefined behavior. Note: Updating advertising data while advertising can only be done
by providing new advertising data buffers.

Configuring and updating an advertising set

Advertising Setis a term introduced in Bluetooth Core Specification v5.0.

Each advertising set is identified by an advertising handle. To configure a new advertising set and obtain a new advertising handle, sd_bl e_gap_adv_set _confi gure() should be called with a pointer p_adv
_handl e pointing to an advertising handle set to BLE_GAP_ADV_SET_HANDLE_NOT_SET.

To update an existing advertising set, sd_bl e_gap_adv_set _confi gure() should be called with a previously configured advertising handle.

Note: Currently only one advertising set can be configured in the SoftDevice.

Configuring advertising parameters for an advertising set
Setting advertising parameters has been moved from sd_bl e_gap_adv_start() tosd_bl e_gap_adv_set configure().
The content of bl e_gap_adv_par ans_t has changed:

® bl e_gap_adv_parans_t: :type has been removed.

® A new parameter, properti es, of the new type bl e_gap_adv_properties_t has been added.
® The advertising type must now be set through bl e_gap_adv_properties_t::type.

Nordic Semiconductor Page 17 of 79

® The advertising type definitions (BLE_GAP_ADV_TYPES) have changed, and new types have been added. The mapping from old to new advertising types is shown below. These advertising
types are referred to as legacy advertising types:
® type = BLE_GAP_ADV_TYPE_ADV_I ND -> properties.type
® type = BLE _GAP_ADV_TYPE_ADV_DI RECT_IND -> properties.type
P_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DI RECTED
® type = BLE_GAP_ADV_TYPE_ADV_SCAN_| ND -> properties.type BLE_GAP_ADV_TYPE_NONCONNECTABLE_SCANNABLE_UNDI RECTED
® type = BLE_GAP_ADV_TYPE_ADV_NONCONN_| ND -> properties.type BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDI RECTED
® ble_gap_adv_parans_t::fp hasbeenrenamedbl e_gap_adv_parans_t::filter_policy.
® ble_gap_adv_parans_t::tineout has beenrenamed bl e_gap_adv_parans_t: : durati on and is now measured in 10 ms units.
® bl e_gap_adv_parans_t:: channel _mask type has been changed from bl e_gap_adv_ch_mask_t to the new type bl e_gap_ch_nask_t.
® Note: At least one of the primary channels that is channel index 37-39 must be set to 0.
® Note: Masking away secondary channels is currently not supported.
® The mapping from old type bl e_gap_adv_ch_mask_t to the new type bl e_gap_ch_nask_t is shown below:
® channel _nmask.ch_37_off = 1->channel _mask = 0x2000000000
® channel _mask.ch_38_off = 1->channel _mask = 0x4000000000
® channel _mask.ch_39_off = 1->channel _mask = 0x8000000000
® bl e_gap_adv_parans_t has several new parameters:
* max_adv_evt s has been added to allow the application to advertise for a given number of advertising events.
® scan_req_notification flag has been added to give the application the possibility to receive events of type bl e_gap_evt _scan_req_report _t. This replaces BLE_GAP_OPT_SCAN_REQ
_REPORT.
® pri mar y_phy and secondary_phy allow the application to select PHYs for primary and secondary advertising channels.
pri mary_phy should be set to BLE_GAP_PHY_AUTOor BLE_GAP_PHY_1MBPS for legacy advertising types. For extended advertising types, it should be set to BLE_GAP_PHY_1MBPS
or BLE_GAP_PHY_CODED if supported by the SoftDevice.
® secondary_phy can be ignored for legacy advertising. For extended advertising types, it should be set to BLE_GAP_PHY_1MBPS, BLE_GAP_PHY_2MBPS, or BLE_GAP_PHY_CODED if
supported by the SoftDevice.
® set _id has been added to allow the application to choose the set ID of an extended advertiser.

BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDI RECTED
BLE_GAP_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DI RECTED H GH_DUTY_CYCLE or BLE_GA

Other Advertising API changes

® BLE GAP_TI MEQUT_SRC_ADVERTI SI NG has been removed.
®* Anew event, BLE_GAP_EVT_ADVERTI SI NG_SET_TERM NATED with structure bl e_gap_evt _adv_set _terni nated_t, has been introduced to let the application know when and why an
advertising set has terminated.
® A new configuration parameter, bl e_gap_cfg_rol e_count _t::adv_set_count, has been introduced to set the maximum number of advertising sets. Note: The maximum number of supported adv
ertising sets is BLE_GAP_ADV_SET_COUNT_MAX.

® BLE GAP_ADV_MAX_SI ZE has been replaced with BLE_GAP_ADV_SET_DATA S| ZE_NAX.
® bl e_gap_evt_connect ed_t now includes adv_handl e and adv_dat a of the new type bl e_gap_adv_dat a_t . These are set when the device connects as a peripheral.
® bl e_gap_evt_scan_req_report_t now includes adv_handl e.
® BLE GAP_OPT_SCAN_REQ REPORT has been removed.
® BLE GAP_ADV_TI MEQUT_LI M TED_MAX has been changed from 180 to 18000 as sd_bl e_gap_adv_par ans_t: : dur ati on is now measured in 10 ms units.
Usage

Nordic Semiconductor Page 18 of 79

static uint8 t raw adv_data_bufferl[BLE GAP_ADV_SET DATA SI ZE MAX];

static uint8 t raw scan_rsp_data_bufferl] BLE GAP_ADV_SET_DATA SI ZE NAX];

static ble _gap_adv_data t adv_datal = {.adv_data.p_data = raw_adv_data buffer1, .adv_data.len =
si zeof (raw_adv_data_bufferl),

.scan_rsp_data.p_data = raw _scan_rsp_data_bufferl, .scan_rsp _data.len

si zeof (raw_scan_rsp_data_buffer1)};

/* A second advertising data buffer for later updating advertising data while advertising */

static uint8 t raw adv_data_buffer2[BLE GAP_ADV_SET DATA SI ZE MAX];

static uint8 t raw scan_rsp_data_buffer2[BLE GAP_ADV_SET DATA SI ZE NAX];

static ble_gap_adv_data t adv_data2 = {.adv_data.p_data = raw_adv_data buffer2, .adv_data.len =
si zeof (raw_adv_dat a_buffer2),

.scan_rsp_data.p_data = raw scan_rsp_data_buffer2, .scan_rsp data.len
si zeof (raw_scan_rsp_data_buffer2)};

i nt mai n(voi d)
{
uint8 t adv_handl e = BLE GAP_ADV_SET HANDLE NOT SET;
bl e _gap_adv_parans_t adv_parans = {.properties={.type=BLE GAP_ADV_TYPE CONNECTABLE SCANNABLE UNDI RECTED},
.interval = BLE_GAP_ADV_I| NTERVAL_MAX,
.duration BLE _GAP_ADV_TI MEQUT_LI M TED_MAX,
. channel _mask {0}, /* Advertising on all the primary channels */
. max_adv_evts 0,
.filter_policy BLE _GAP_ADV_FP_ANY,
. primary_phy BLE_GAP_PHY_AUTQ,
.scan_reqg_notification 1

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]
sd bl e _gap_adv_set configure(&dv_handl e, &dv_datal, &adv_parans);

Nordic Semiconductor Page 19 of 79

[* Start advertising */
sd_bl e_gap_adv_start (adv_handl e, BLE CONN_CFG TAG DEFAULT);

[..

-]

/* Update advertising data while advertising */
sd_bl e_gap_adv_set confi gure(&adv_handl e, &adv_data2, NULL);

[..

-]

/* Stop advertising */
sd_bl e _gap_adv_stop(adv_handl e);

Updated scanner API

The scanner API has been updated. The changes are as follows:

® bl e_gap_scan_parans_t has been changed:

A new flag, ext ended, has been added. If set to 1, the scanner will receive both legacy advertising packets and extended advertising packets. If set to 0, the extended advertising packets will
be ignored.

The Observer channel map for primary advertising channels can be set through a new parameter bl e_gap_scan_par ans_t : : channel _mask. The parameter type bl e_gap_ch_mask_t is
the same as is used for setting advertiser channel map.

use_whitelist and adv_dir_report have been combinedintofilter_policy. See BLE_GAP_SCAN _FI LTER POL| Cl ES for valid policies.

scan_phys has been added to let the application decide on which PHYs the scanner should receive packets. Set to BLE_GAP_PHY_AUTOorBLE_GAP_PHY_1MBPS if extended scanning is
disabled.

ti meout is now measured in 10 ms units.

® sd_bl e_gap_scan_start () has anew input parameter, p_adv_r eport _buf f er, which takes a pointer to an advertising report buffer that must be kept alive until the scanner is stopped. The
minimum buffer size is either BLE_GAP_SCAN BUFFER M Nor BLE_GAP_SCAN BUFFER _EXTENDED M N when extended scanning is enabled.

® When the application receives a bl e_gap_adv_report _t, it must now resume scanning by calling sd_bl e_gap_scan_start ().

® ble_gap_evt_adv_report_t has been updated:

bl e_gap_evt _adv_report _t::type has been redefined from ui nt8_t tobl e_gap_adv_report_type_t.
scan_r sp flag has been removed. It is now included in bl e_gap_adv_report _type_t::scan_response.
dat a and dl en have been replaced with dat a of type bl e_dat a_t .

New fields have been added: and aux_poi nt er.

® bl e_gap_evt_tineout _t now includes adv_r eport _buff er which is set when the scanner times out.
® BLE_GAP_SCAN | NTERVAL_MAX and BLE_GAP_SCAN_W NDOW MAX have been increased from 0x4000 to OxFFFF.

Nordic Semiconductor

Page 20 of 79

® BLE GAP_SCAN TI MEOUT MAX has been removed.

Usage

static uint8 t raw scan_buffer[BLE GAP_SCAN BUFFER M N ;
static ble_data_t scan_buffer = {.p_data = raw _scan_buffer, .len = sizeof(raw_scan_buffer)};

void on_ble evt(const ble evt t * p_evt)

{
if (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)

{

ble gap_evt _adv_report_t * p_report = & _ble_evt->evt.gap_evt. parans. adv_report;

/* Read out data*/

[...]

/* Continue scanning. */
sd _ble gap_scan_start(NULL, &scan_buffer);

}
}
int mai n(void)
{
bl e_gap_scan_parans_t scan_paranms= {.ext ended = 0,
. scan_phys = BLE GAP_PHY_ AUTO,
. ti meout = BLE_GAP_SCAN TI MEQUT_UNLIM TED, /* Unlimted scanning */
.interval = BLE_GAP_SCAN | NTERVAL MAX,

. channel _mask {0}, /* Scanning on all the primary channels */
.filter_policy = BLE _GAP_SCAN FP_ACCEPT_ALL

/* Enabl e the BLE Stack */

Nordic Semiconductor Page 21 of 79

sd _ble enable(...);

/* Start scanning */
sd bl e _gap_scan_start(&scan_parans, &scan_buffer);

Updated RSSI API

The RSSI API has been changed so that the SoftDevice can provide the application with the channel index on which the reported RSSI measurements are made.
® sd_bl e_gap_rssi_get () takes an additional parameter p_ch_i ndex. For this parameter, provide a pointer to a location where the channel index for the RSSI measurement should be stored.
® The event structure for the BLE_GAP_EVT_RSSI _ CHANCED event has a new parameter bl e_gap_evt _rssi _changed_t: : ch_i ndex. This is the Data Channel Index (0-36) on which the RSSI is
measured.

® The event structure for the BLE_GAP_EVT_ADV_REPORT event has a new parameter bl e_gap_evt _adv_report _t:: ch_i ndex. This is the Channel Index (0-39) on which the last advertising packet
is received. The corresponding measured RSSI for this packet can be read from bl e_gap_evt _adv_report_t::rssi.

TX power API

The TX power APl now supports setting individual transmit power for each link or role.

®* sd_bl e_gap_t x_power_set () takes two new parameters, r ol e and handl e, in addition to t x_power . For available roles and TX power values, see ble_gap.h.

Updated Flash API

sd_flash_write() now triggers a HardFault if the application tries to write to a protected page. NRF_ERROR_FORBI DDEN is returned if the application tries to write to a page outside application flash area.

sd_fl ash_page_erase() now triggers a HardFault if the application tries to erase a protected page. NRF_ERROR_FORBI DDEN is returned if the application tries to erase a page outside application flash area.

Nordic Semiconductor Page 22 of 79

s132 _nrf52_5.0.0

This section describes how to migrate to s132_nrf52_5.0.0 from s132_nrf52_4.0.3.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.
For Keil this means:

® Go into the properties of the project and find the Target tab
® Change IROM1 Start to 0x23000.

If the project uses a scatter file or linker script instead, they must be updated accordingly.

The RAM usage of the SoftDevice has also changed. sd_bl e_enabl e() should be used to find the APP_RAM_BASE for a particular configuration.

APl renaming and updates

Some APIs are renamed or removed. Applications that use the old APl names must be updated:

® The timeout source BLE_GAP_TI MEOUT_SRC_SECURI TY_REQUEST has been removed. Use the existing BLE_GAP_EVT_AUTH_STATUS {aut h_status: BLE_GAP_SEC STATUS_TI MEQUT} instea
d.

BLE_GAP_ADV_NONCON_I NTERVAL_M N has been removed because the lower limit for the advertising interval for non-connectable advertisement has been lowered to BLE_GAP_ADV_| NTERVAL_M N.
The compatibility mode BLE_GAP_OPT_COVPAT_MODE_ 2 is removed because the SoftDevice now accepts overlapping peer-initiated Link Layer control procedures as a slave.

NRF_ERROR_BUSY will no longer be returned by sd_bl e_gap_adv_start (), sd_bl e_gap_scan_start(),sd_bl e_gap_aut henticate() andsd_bl e_gap_connect ().

NRF_ERROR_BUSY can now be returned when calling sd_bl e_user _nem reply(),sd_ble_gatts_rw authorize_reply() orsd_bl e_gap_sec_parans_reply().
NRF_CLOCK_LF_XTAL_ACCURACY renamed to NRF_CLOCK_LF_ACCURACY

nrf_clock_|f_cfg_t struct member xtal _accuracy renamed to accur acy.

A new event BLE_GAP_EVT_PHY_UPDATE REQUEST has been added. The application must check for this event and respond to it by calling the SV call sd_bl e_gap_phy_updat e() . For more
information, please refer to the 2 Mbps PHY support section in New functionality.

RC Oscillator accuracy

Nordic Semiconductor Page 23 of 79

The RC oscillator accuracy can now be set to any of the defined NRF_CLOCK_LF_ACCURACY values and there is no default value anymore. In other words, the nrf _cl ock_I| f _cfg_t:: accuracy parameter
now has the same functionality when used with the RCOSC clock source as with the XTAL clock source. The RC oscillator accuracy should be set to a value appropriate for the chip.

New functionality

2 Mbps PHY support

This SoftDevice supports 2 Mbps PHY data transmission for already established connections. Either the application or the peer can request switching to 2 Mbps PHY in order to achieve higher throughput. Both
sides need to agree on the PHYs before a PHY change can occur. The application has to respond to the PHY Update procedure when that is initiated by the peer, otherwise the link will be disconnected. This
makes it necessary for the application to pull a new event: BLE_GAP_EVT_PHY_UPDATE_REQUEST. Another event, BLE_GAP_EVT_PHY_UPDATE, may be raised when a PHY Update procedure is completed

but the application is not required to take any actions for this event.

APl Updates
® Anew SV call, sd_bl e_gap_phy_updat e(), has been added to request the controller to attempt to change to a new PHY, or to respond to a peer-initiated PHY Update procedure.

bl e_gap_phys_t phys = {BLE _GAP_PHY_2MBPS, BLE_GAP_PHY_2MBPS}
sd_bl e_gap_phy_updat e(conn_handl e, &phys);

®* Anew event, BLE_GAP_EVT_PHY_UPDATE_REQUEST, has been added to notify the application that the peer has initiated a PHY Update procedure, to which the application must respond with its PHY

preferences.
®* Anew event, BLE_ GAP_EVT_PHY_UPDATE, has been added to notify the application that a self-initiated or peer-initiated PHY Update procedure has been completed.

case BLE_GAP_EVT_PHY_UPDATE_ REQUEST:

{
/* The PHYs requested by the peer can be read fromthe event paraneters:

phy updat e_request. peer_preferred_phys.
* Note that the peer's TX correponds to our

p_bl e evt->evt.gap_evt. parans.

RX and vice versa. */

Page 24 of 79

Nordic Semiconductor

/* Al ow SoftDevice to choose PHY Update Procedure parameters automatically. */
bl e_gap_phys_t phys = {BLE_GAP_PHY_AUTO, BLE_GAP_PHY_AUTG;
sd_bl e_gap_phy_updat e(p_bl e_evt->evt. gap_evt.conn_handl e, &phys);

br eak;

}

case BLE GAP_EVT_ PHY_UPDATE:

{
if (p_ble_evt->evt.gap_evt. parans. phy_update.status == BLE HCl STATUS CODE_SUCCESS)
{

/* PHY Update Procedure conpleted, see p_ble_evt->evt.gap_evt. parans. phy_update.tx_phy and p_bl e_evt->evt.
gap_evt. parans. phy_update.rx_phy for the currently active PHYs of the link. */
}

br eak;

Connection-Oriented Channels in LE Credit Based Flow Control Mode

The SoftDevice now supports Connection-Oriented Channels in the LE Credit Based Flow Control Mode. To be able to use this feature, the application has to set an L2ZCAP connection configuration using
the configuration APl sd_bl e_cf g_set () as shown below.

Usage

Setting L2CAP Connection Configuration
/* Set L2CAP Connection Configuration for connection identified by coc_conn_cfg tag */

ble cfg t cfg;
menset (&fg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg tag = coc_conn_cfg_tag;
cfg. conn_cfg. parans. | 2cap_conn_cfg. rx_nps = BLE L2CAP_MPS M N;

Nordic Semiconductor Page 25 of 79

cfg.conn_cfg. parans. | 2cap_conn_cfg.tx_nps = BLE L2CAP_MPS M N;

cfg. conn_cfg. parans. | 2cap_conn_cf g. rx_queue_si ze = b;
cfg.conn_cfg. parans. | 2cap_conn_cfg.tx_queue_si ze = b;
cfg.conn_cfg. parans.| 2cap_conn_cfg. ch_count = 1;

sd_ble_cfg_set (BLE _CONN_CFG L2CAP, &cfg, ...);

[...]

/* Enabl e the BLE Stack */
sd_ble_enable(...);

The usage of some of the SV calls and events related to this feature is explained below. For the complete list of SV calls and events, please refer to the APl documentation available in bl e _| 2cap. h.

Anew SV call, sd_bl e_| 2cap_ch_set up(), has been added to request the setup of an L2ZCAP channel, or to respond to a setup request from a peer.

Usage
Creating a new L2CAP Channel i
uint16_t local _cid = BLE_L2CAP_CI D_I NVALI D;
bl e | 2cap_ch_setup_parans_t ch_set up_par ans;
ch_setup _parans.le_psm = 0x25;
ch_setup_parans.rx_params.rx_ntu = BLE _L2CAP_MIU M N,
ch_setup_parans. rx_paramns. rx_nps = BLE _L2CAP_MPS M N,
ch_setup_parans. rx_parans. sdu_buf = NULL;
sd _ble | 2cap_ch_setup(conn_handl e, & ocal cid, &h_setup_ parans);

Nordic Semiconductor Page 26 of 79

Responding to a L2CAP Channel setup request

case BLE_L2CAP_EVT_CH SETUP_REQUEST:

{
/* An L2CAP channel setup request has been received fromthe peer. */
uint16 t local _cid = p_ble_evt->evt.|2cap_evt.local _cid,;
ble | 2cap_ch_setup_parans_t ch_set up_par ans;
ch_setup_parans.| e_psm = 0x25;
ch_setup_paranms.rx_params.rx_ntu = BLE L2CAP_MIU_ M N;
ch_setup_parans. rx_parans. rx_nps = BLE_L2CAP_MPS_M N,
ch_setup_parans.rx_parans. sdu_buf = NULL;
sd_ble_ | 2cap_ch_setup(p_bl e_evt->evt.| 2cap_evt. conn_handl e, & ocal cid, &ch_setup_parans);
br eak;
}

..

The SV call sd_bl e_| 2cap_ch_t x() can be used to transmit an SDU (Service Data Unit) on an L2CAP channel. The event BLE_L2CAP_EVT_CH_TX s generated by the SoftDevice to notify the application
that the SDU has been transmitted.

Transmitting on an L2CAP Channel

ble data t sdu_to_send;
uint8_t data[] = "Sanple";

sdu_to_send. |l en
sdu_to_send. p_data

strlen(data);
dat a;

Nordic Semiconductor Page 27 of 79

sd_ble_| 2cap_ch_tx(conn_handl e, local _cid, &sdu_to_send);

[...]

case BLE L2CAP_EVT_CH TX
/* The SDU is transmtted. */
br eak;

..

The SV call sd_bl e_| 2cap_ch_r x() shall be used to provide the SoftDevice with a buffer to receive an SDU from the peer. The event BLE_L2CAP_EVT_CH_RX s generated by the SoftDevice to notify the
application that an SDU has been received. The application shall not change the buffer provided to the SoftDevice before receiving the event.

Receiving on an L2CAP Channel

ble data_t sdu_buf;
uint8 t dat a[150] ;

sdu_buf .l en
sdu_buf.p_data

strlen(data);
dat a;

sd_ble_| 2cap_ch_rx(conn_handl e, |ocal _cid, &sdu_buf));

[...]
case BLE L2CAP_EVT_CH RX:
/* An SDU is received by the SoftDevice fromthe peer and is available in p_ble_evt->evt.|2cap_evt. parans.rx.

Nordic Semiconductor Page 28 of 79

sdu_buf */

br eak;

Network Privacy Mode
The SoftDevice now supports the Network Privacy Mode. In Network Privacy Mode, a device will only accept advertising packets from peer devices that contain private addresses.
APl Updates

®* Anew mode, BLE_GAP_PRI VACY_MODE_NETWORK_PRI VACY, is added to enable Network Privacy Mode.
® A new characteristic, BLE_UU D_GAP_CHARACTERI STI C_RPA_ONLY (RPA = Resolvable Private Address), is defined to let the application add this characteristic to the attribute database.

Usage

Set the privacy settings to network privacy with random private resolvable address:

bl e_gap_privacy_parans_t privacy_parans = {0};

privacy_parans. privacy_node = BLE_GAP_PRI VACY_MODE_NETWORK_PRI VACY
privacy_parans. private_addr_type = BLE_GAP_ADDR TYPE_RANDOM PRI VATE RESOLVABLE
sd_bl e _gap_privacy_set(privacy_parans);

Unique string to identify a SoftDevice

The SoftDevice Information Structure now also contains a string, namely the SoftDevice unique string, that can be used to uniquely identify a version of the SoftDevice (applies also for alpha releases).

Nordic Semiconductor Page 29 of 79

A new define SD_UNI QUE_STR_ADDR_GET has been added to retrieve the address of the SoftDevice unique string. The defines SD_UNI QUE_STR_SI ZE and SD_UNI QUE

_STR_OFFSET define the size of the string and its offset relative to the SoftDevice base address respectively.

Fetching the SoftDevice unique string

/* Declare a character array that is twice the length of the SoftDevice unique string.

* This will be used to store the hexadeci mal representation of the SoftDevice unique string. */
char str[SD_UNI QUE_STR SI ZE * 2];

/* Fetch the address of the SoftDevice unique string. */

const uint8_ t * const p_unique_str = SD UNI QUE_STR _ADDR GET(MBR_SI ZE) ;

/* Read the SoftDevice unique string into the character array, converting it into hexadeci mal notation.

for (uint8_t i =0; i < SD UNIQUE_STR SI ZE; i ++)
{

sprintf(&str[i * 2], "9%92x", p_unique_str[i]);
}

/* The SoftDevice unique string is now available in the character array nanmed str. */

Other API additions and changes

The status code BLE_HCl _ STATUS_CODE_LMP_ERROR_TRANSACTI ON_COLLI SI ON indicates that there has been an illegal collision of LL Control PDUs on air.
A new MBR command SD_MBR_COVIVAND_| RQ_FORWARD_ADDRESS_SET has been added to forward all interrupts to another base address.

New defines for minimum and maximum values of authenticated payload timeout have been added. See BLE_GAP_AUTH_PAYLQOAD_TI MECUT.

Aflag | esc is added to the bl e_gap_evt _aut h_st atus_t struct, indicating whether an authentication procedure resulted in an LE Secure Connection.

The SoftDevice will no longer return NRF_ERROR_BUSY on sd_bl e_gap_conn_par am updat e() unless the procedure is already in progress.

using NRF_RADI O_SI GNAL_CALLBACK_ACTI ON_EXTEND with the Radio Timeslot API.

Nordic Semiconductor

The new definitions NRF_RADI O_MAX_EXTENSI ON_PROCESSI NG _TI ME_US and NRF_RADI O_M N_EXTENSI ON_MARG N_US define timing constraints the application must take into account when

Page 30 of 79

s132 _nrf52_4.0.3

This section describes how to migrate to s132_nrf52_4.0.3 from s132_nrf52_3.0.0.

Required changes

SoftDevice RAM usage

The RAM usage of the SoftDevice has changed. sd_bl e_enabl e() should be used to find the APP_RAM BASE for a particular configuration.

New configuration API

Configuration parameters passed to sd_bl e_enabl e() have been moved to the SoftDevice configuration API.

APl updates

® Anew SVcallsd_bl e_cfg_set() is added to set the configuration. This API can be called many times to configure different parts of the BLE stack. All configurations are optional. Configuration

parameters not set by this API will take their default values.
® The SV call parameter bl e_enabl e_parans_t * p_bl e_enabl e_par ans is removed from sd_bl e_enabl e() . The SV call sd_bl e_cf g_set () must be used instead. The parameters of this

call are given in the following table:

Old API: bl e_enabl e_parans_t member New API: cfg_idinsd_ble_cfg_set()
common_enabl e_par ans. vs_uui d_count BLE COVMON_CFG VS UUl D
comon_enabl e_par ans. p_conn_bw_count s BLE CONN_CFG_GAP (*)
gap_enabl e_par ans. peri ph_conn_count BLE _GAP_CFG _ROLE_COUNT

gap_enabl e_par ans. central _conn_count
gap_enabl e_par ans. central _sec_count

gap_enabl e_par anms. p_devi ce_nane BLE GAP_CFG _DEVI CE_NAVE

gatt _enabl e_par ans BLE _CONN_CFG_GATT (*)
gatts_enabl e_parans. servi ce_changed BLE GATTS_CFG_SERVI CE_CHANGED
gatts_enabl e_parans. attr_tab_size BLE _GATTS_CFG ATTR TAB_SI ZE

Nordic Semiconductor Page 31 of 79

(*) These configurations can be set per link.

Usage

Example pseudo code to set per link ATT_MTU using the new configuration API:

const uintl6_ t client_rx_mu = 158;
const uint32_t long_att_conn_cfg_tag = 1;

/* set ATT_MIU for connections identified by long_att_conn_cfg_tag */
ble cfg_t cfg;
menset (&cfg, 0, sizeof(ble _cfg_t));

cfg.conn_cfg.conn_cfg tag = long_att_conn_cfg_tag;
cfg.conn_cfg.parans.gatt_conn_cfg.att_nmu = client_rx_mtu;
sd_ble_cfg_set (BLE CONN_CFG GATT, é&cfg, ...);

/* Enable the BLE Stack */
sd _ble enable(...);

[...]
uintlé t long att _conn_handl e;

/* Establish connection with long_att _conn_cfg_tag */
sd_ble_gap_adv_start(..., long_att_conn_cfg_ tag);

[...]

/* Establish connection with BLE CONN_CFG TAG DEFAULT, it will use default ATT_MIU of 23 bytes */
sd_bl e_gap_connect (..., BLE CONN CFG TAG DEFAULT);

[...]

Nordic Semiconductor Page 32 of 79

/* Start ATT_MIU exchange */
sd_bl e _gattc_exchange ntu_request(long att_conn_handle, client_rx_ntu);

BLE bandwidth configuration

The BLE bandwidth configuration and application packet concept has been changed. Previously, the application could specify a bandwidth setting, which would result in a given queue size and a correpsonding
given radio time allocated. Now the queue sizes and the allocated radio time have been separated. The application can now configure:

® Event length
® Write without response queue size
® Handle Value Notification queue size
These settings are configurable per link.
Note that now the configured queue sizes are not directly related to on-air bandwidth:
® The application can configure one single packet to be queued in the SoftDevice, but still achieve full throughput if the application can queue packets fast enough during connection events.

® Even if the application configures a large number of packets to be queued, not all of them will be sent during a single connection event if the configured event length is not large enough to send the
packets.

APl updates

® The bl e_enabl e_parans_t:: common_enabl e_parans. p_conn_bw_count s parameter of the sd_bl e_enabl e() SV call is replaced by the sd_bl e_cfg_set () SV callwithcfg_id
parameter set to BLE_CONN_CFG_GAP. The following table shows how the old bandwidth configuration corresponds to the new one for the default ATT_MTU:

Old API: BLE_CONN_BWS New API: bl e_gap_conn_cfg_t::event_| engthinsd_ble_cfg_set()
BLE_CONN_BW LOW BLE_GAP_EVENT_LENGTH_M N

BLE_CONN_BW M D BLE_GAP_EVENT_LENGTH DEFAULT

BLE_CONN_BW HI GH 6

The bandwidth configuration is further described in the SDS.

® The BLE_COVMON_OPT_CONN_BWoption is removed. Instead, during connection creation, the application should supply the conn_cf g_t ag defined by the bl e_conn_cfg_t::conn_cfg_tag
parameter in the sd_bl e_cf g_set () SV call.

® A new parameter conn_cf g_t ag is added to sd_bl e_gap_adv_start () and sd_bl e_gap_connect () SV calls. To create a connection with a default configuration, BLE_CONN_CFG TAG DEFAULT
should be provided in this parameter.

® The BLE_EVT_TX_ COVPLETE event is split on two events: BLE_GATTC_EVT_WRI TE_CVD_TX_COVPLETE and BLE_GATTS_EVT_HVN_TX_ COVPLETE.

Nordic Semiconductor Page 33 of 79

® The SV call sd_bl e_t x_packet _count _get () is removed. Instead, the application can now configure packet counts per link, using the SV call sd_bl e_cf g_set () with the cf g_i d parameter set

to BLE_CONN_CFG_GATTCand BLE_CONN_CFG_GATTS.

Usage

Example pseudo code to set configuration that corresponds to the old BLE_CONN_BW HI GH bandwidth configuration both in throughput and packet queueing capability:

const uint32_t high_bw conn_cfg tag = 1;
ble cfg_ t cfg;

/* configure connections identified by high bw conn _cfg tag */

/* set connection event |length */

menset (&cfg, 0, sizeof(ble cfg t));

cfg.conn_cfg.conn_cfg tag = high_bw conn_cfg tag;

cfg.conn_cfg. parans. gap_conn_cfg.event length = 6; /* 6 * 1.25 ns = 7.5 nms corresponds to the old

BLE CONN BWHI GH for default ATT_MIU */

cfg.conn_cf g. parans. gap_conn_cfg. conn_count = 1; /* application needs one link with this configuration */
sd _ble cfg set(BLE CONN CFG GAP, &cfg, ...);

/* set HVN queue size */

menset (&fg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = high_bw conn_cfg_tag;

cfg.conn_cfg. parans.gatts_conn_cfg. hvn_tx _queue_size = 7; /* application wants to queue 7 HVNs */
sd ble cfg set(BLE CONN _CFG GATTS, &cfg, ...);

/* set WRI TE_CMD queue size */
menset (&cfg, 0, sizeof(ble cfg t));
cfg.conn_cfg.conn_cfg tag = high_bw conn_cfg tag;

cfg.conn_cfg. parans.gattc_conn_cfg.wite_cnd_tx_queue_size = 0; /* application is not going to send WRI TE_C\VD

so set to O to save nmenory */
sd_ble cfg set(BLE CONN _CFG GATTC, &cfg, ...);

Nordic Semiconductor

Page 34 of 79

/* Enabl e the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t high_bw conn_handl e;
/* Establish connection with high_bw conn_cfg tag */
sd_ble _gap_adv_start(..., high_bw conn_cfg tag);

..

Data Length Update Procedure

The application now has to respond to the Data Length Update Procedure when initiated by the peer. See the description of the Data Length Update Procedure in the New functionality section for more details.

Required changes:

..

case BLE_GAP_EVT_DATA LENGTH_UPDATE_REQUEST:
{
/* Al'l ow SoftDevice to choose Data Length Update Procedure parameters automatically. */

sd_bl e_gap_data_l engt h_updat e(p_bl e_evt->evt. gap_evt.conn_handl e, NULL, NULL);
br eak;

}
case BLE_GAP_EVT_DATA LENGTH_UPDATE:

{

/* Data Length Update Procedure conpl eted, see p_ble_evt->evt.gap_evt. parans. data_l engt h_updat e.
ef fective_parans for negotiated paraneters. */
br eak;

..

Access to RAM x] . PONER registers

Nordic Semiconductor Page 35 of 79

SoftDevice APIs are updated to provide access to the RAM x] . POAER registers instead of the deprecated RAMON RAMONB.
APl updates

® sd_power _ranon_set () SV call is replaced with sd_power _ram power _set ().
® sd_power _ranon_clr() SV callis replaced with sd_power _ram power _cl r ().
® sd_power _ranon_get () SV call is replaced with sd_power _ram power _get ().

APl rename
Some APIs were renamed. Applications that use the old names must be updated.
APl updates

BLE_EVTS_PTR_ALI GNMVENT is renamed to BLE_EVT_PTR_ALI GNVENT.

BLE EVTS LEN MAXis renamed to BLE_EVT _LEN_ NAX.

GATT_MTU_SI ZE_DEFAULT is renamed to BLE_GATT_ATT_MTU_DEFAULT.

The GAP option BLE_GAP_OPT_COVPAT_MODE is renamed to BLE_GAP_OPT_COVPAT_MODE_1.

bl e_gap_opt _conpat _node_t structure is renamed to bl e_gap_opt _conpat _node_1_t.

bl e_gap_opt _conpat _node_t: : node_1_enabl e structure member is renamed to bl e_gap_opt _conpat _node_1_t: : enabl e.
bl e_gap_opt _t:: conpat _node structure member is renamed to bl e_gap_opt _t: : conpat _node_1.

Proprietary L2CAP API removed
The proprietary API for sending and receiving data over L2CAP is removed.
APl updates

® The SV calls sd_ble_l 2cap_cid_register(),sd_ble_| 2cap_cid_unregister(),andsd_ble_| 2cap_t x() are removed.
® BLE L2CAP_EVT_RXeventis removed.

* The following defines are removed: BLE _L2CAP_MIU _DEF, BLE_L2CAP_Cl D_| NVALI D, BLE_L2CAP_Cl D_DYN_BASE, BLE_L2CAP_Cl D_DYN_MAX.
New functionality

Data Length Update Procedure

The application is given control of the Data Length Update Procedure. The application can initiate the procedure and has to respond when initiated by the peer.

Nordic Semiconductor Page 36 of 79

APl updates

® Anew SVcallsd_bl e_gap_data_| engt h_updat e() is added to initiate or respond to a Data Length Update Procedure.

* The BLE_EVT DATA LENGTH CHANGED event is replaced with BLE_GAP_EVT DATA LENGTH UPDATE.

® Anewevent BLE GAP_EVT_DATA LENGTH UPDATE_REQUEST is added to notify that a Data Length Update request has been received. sd_bl e_gap_dat a_| engt h_updat e() must be called by
the application after this event has been received to continue the Data Length Update Procedure.

® The GAP option BLE_GAP_OPT_EXT_LENis removed. The sd_bl e_gap_dat a_I engt h_updat e() SV call should be used instead.

Usage

® The Data Length Update Procedure can be initiated locally or by peer device.
® Following is the pseudo code for the case where Data Length Update Procedure is initiated by application:

const uintl6_t client_rx_ntu = 247,
const uint32_t long att _conn _cfg tag = 1;

/* ATT_MIU nust be configured first */
ble cfg_t cfg;
menset (&fg, 0, sizeof(ble cfg t));

cfg.conn_cfg.conn_cfg tag = long_att_conn_cfg_tag;
cfg.conn_cfg. parans.gatt_conn_cfg.att_mu = client_rx_mu;
sd_ble_cfg_set (BLE _CONN_CFG GATT, é&cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

uintlé6 t long att _conn_handl e;
/* Establish connection */
sd_ble _gap_adv_start(..., long_att_conn_cfg tag);

/* Start Data Length Update Procedure, can be done wi thout ATT_MIU exchange */

Nordic Semiconductor Page 37 of 79

ble gap_data | ength_paranms_t parans = {
.max_tx _octets = client_rx ntu + 4,
.max_rx_octets client_rx_mu + 4,
.max_tx_time_us = BLE_GAP_DATA LENGTH_AUTOQ,
.max_rx_time_us BLE_GAP_DATA LENGTH_AUTO

s
sd_bl e _gap_data_l engt h_updat e(l ong_att_conn_handl e, ¶ms, NULL);

case BLE_GAP_EVT_DATA LENGTH_UPDATE:
{

/* Data Length Update Procedure conpl eted, see p_ble_evt->evt.gap_evt. parans. data_| engt h_updat e.
effective_parans for negotiated paraneters. */
br eak;

New compatibility mode

A new compatibility mode is added to enable interoperability with central devices that may initiate version exchange and feature exchange control procedures in parallel. To enable this mode, use the sd_bl e_op
t _set () SV call with the opt _i d parameter set to BLE _GAP_OPT_COVPAT_MODE_2.

Slave latency configuration

It is now possible to disable and enable slave latency on an active peripheral link. To disable or re-enable slave latency, use the sd_bl e_opt _set () SV call with the opt _i d parameter set to BLE_GAP_OPT_S
LAVE_LATENCY_DI SABLE.

Support for high accuracy LFCLK oscillator source

It is now possible to configure the SoftDevice with higher accuracy LFCLK oscillator source. Four new levels are defined:

Nordic Semiconductor Page 38 of 79

#defi ne NRF_CLOCK_LF_XTAL_ACCURACY_10_PPM (8)

#define NRF_CLOCK LF_XTAL_ACCURACY_5_PPM
#define NRF_CLOCK_LF_XTAL_ACCURACY 2 PPM (10) /**< 2 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY 1 _PPM (11) /**< 1 ppm */

RC oscillator: "xtal_accuracy" must be configured

[**< 10 ppm */

(9) /**< 5 ppm*/

In previous versions of the SoftDevice, the xt al _accur acy was ignored by the APl when RCOSC was selected as the low frequency clock source. The default configuration used was 250 ppm. The RC
oscillator accuracy must now be configured by setting nrf _cl ock_| f _cfg_t:: xtal _accuracy to NRF_CLOCK_LF_XTAL_ACCURACY_250_PPMto maintain the behavior of previous SoftDevices. The only
other valid configuration is NRF_CLOCK_LF_XTAL_ACCURACY_500_PPM If the xt al _accur acy is set to any value other than 250 ppm or 500 ppm, a default configuration of 500 ppm will be applied.

New power failure levels

It is now possible to configure the SoftDevice with all the new power failure levels introduced in NRF52. Levels that are added:

NRF_POWER_THRESHOLD V17
NRF_POWER_THRESHOLD V18
NRF_POWER_THRESHOLD V19
NRF_POWER THRESHOLD V20
NRF_POWER_THRESHOLD V22
NRF_POWER THRESHOLD V24
NRF_POWER_THRESHOLD V26
NRF_POWER THRESHOLD V28

Nordic Semiconductor

/**<
/**<
/**<
/**<
/**<
/**<
/**<
/**<

Set
Set
Set
Set
Set
Set
Set
Set

t he
t he
t he
t he
t he
t he
t he
t he

power failure
power failure
power failure
power failure
power failure
power failure
power failure
power failure

t hreshol d
t hreshol d
t hreshol d
t hreshol d
t hreshol d
t hreshol d
t hreshol d
t hreshol d

to
to
to
to
to
to
to
to

NNNNNPE PP

0o A~ADNOOOW-N

<<<<<K<<LK<LKK<L

*/
*/
*/
*/
*/
*/
*/
*/

Page 39 of 79

s132 nrf52 3.0.0

This section describes how to migrate to s132_nrf52_3.0.0 from s132_nrf52_2.0.1.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.
For Keil this means:

® Go into the properties of the project and find the Target tab
® Change IROM1 Startto 0x1F000.

If the project uses a scatter file or linker script instead, those must be updated accordingly.

The RAM usage of SoftDevice has also changed. sd_bl e_enabl e() should be used to find the APP_RAM_BASE for a particular configuration.

LL Privacy

This SoftDevice brings in support for LL Privacy. All applications must be updated to the new Privacy API and whitelist API supporting this new feature. Refer to the description of LL privacy in the New
functionality section for more details.

Required changes:

® Enable privacy

/[* S132 v2.0 APl usage */
ble gap_addr _t private_addr = {0};

private_addr.addr_type = BLE _GAP_ADDR TYPE RANDOM PRI VATE RESOLVABLE;
sd_bl e_gap_addr _set (BLE_GAP_ADDR _CYCLE MODE_AUTQ, private_addr);

Nordic Semiconductor Page 40 of 79

...

/* S132 v3.0 APl usage */

bl e _gap_privacy_parans_t privacy_parans = {0};

privacy_parans. privacy_node = BLE GAP_PRI VACY_MODE DEVI CE_PRI VACY
privacy_parans. private_addr_type = BLE GAP_ADDR TYPE RANDOM PRI VATE RESOLVABLE
sd_bl e_gap_privacy_set (privacy_parans);

..

/* S132 v2.0 APl usage */

ble gap_addr _t identity addr = saved identity addr; /* Fromsd ble gap addr_get(). */
sd_bl e _gap_addr _set (BLE _GAP_ADDR CYCLE MODE NONE, identity addr);

..

..

/* S132 v3.0 APl usage */

bl e_gap_privacy_parans_t privacy_parans = {0};
privacy_parans. privacy_node = BLE GAP_PRI VACY_MODE_OFF
sd_bl e _gap_privacy_set(privacy_parans);

..

/* S132 v2.0 APl usage */
/* Public devices. */

bl e_gap_addr _t public_devicel = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,

Nordic Semiconductor Page 41 of 79

Nordic Semiconductor

.addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}};
bl e_gap_addr _t public_device2 = {

.addr _type = BLE_GAP_ADDR TYPE_PUBLI C

.addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60}};

/* 1RKs of Private devices. */
ble_ gap_irk_t irkl1 ={ .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble gap_irk_tt irk2 = { .irk = { 0x01, 0x02, 0x03 /*...*/} };

ble gap_addr_t * whitelist _addrs[2] = {&public_devicel, &public_device2};
ble gap_irk_t * whitelist_irks[2] = {& rkl, & rk2};
ble gap_whitelist_t whitelist = {
.pp_addrs = &whitelist_addrs, .addr_count = 2, /* Public devices. */
.pp_irks = &hitelist irks, .irk count = 2, /* Private devices. */};

bl e_gap_adv_parans_t adv_paranms = {0};
adv_parans. p_whitelist = &hitelist
sd_bl e _gap_adv_start (&adv_parans);

/* S132 v3.0 APl usage */

bl e_gap_addr_t public_devicel = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
i
bl e _gap_addr _t public_device2 = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60},
i
/* Private devices. Matches addresses in identity list. */
bl e_gap_addr_t private_devicel = {

Page 42 of 79

Nordic Semiconductor

.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {0xAl, OxA2, OxA3, O0xA4, OxA5, O0xA6}
s
bl e _gap_addr _t private device2 = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {O0x1A, Ox2A, Ox3A, O0x4A, Ox5A, O0x6A},
s
ble gap_addr _t * whitelist[4] = {
&publ i c_devi cel, &public_device2,
&private devicel, &private device2,
s
ble gap_id key t identityl = {
.id_addr_info = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {O0xAl, OxA2, OxA3, OxA4, OxA5, OxA6},},
.id_info ={
.irk ={ 0x10, 0x20, Ox30 /*...*/},}
s
ble gap_id key t identity2 = {
.id_addr_info = {
.addr _type = BLE _GAP_ADDR TYPE PUBLIC
.addr = {Ox1A, Ox2A, Ox3A, O0x4A, Ox5A, Ox6A},},
.id_info = {
.irk = { 0x01, 0x02, 0x03 /*...*/},}
s

ble gap_id key t * identities[2] = { & dentityl, & dentity2 };

sd ble gap device identities set(& dentities, NULL /* Don't use local |RKs*/,
sd_ble_gap _whitelist_set(&whitelist, 4);

bl e_gap_adv_parans_t adv_paranms = {0};

adv_parans. fp = BLE_GAP_ADV_FP_FI LTER BOTH,

sd_bl e _gap_adv_start (&adv_parans);

2);

Page 43 of 79

..

/* S132 v2.0 API

usage */

/* GAP connection paraneter */

bl e_gap_evt _connected_t conn_evt;

conn_evt.irk_match; /* Set to true if IRK matched. */
conn_evt.irk_match_idx; /* Set to index into pp_irks in whitelist.*/

conn_evt . peer _addr;

/* S132 v3.0 API

usage */

/* bl e_gap_addr_t has been updated.

The events bl e_gap_evt _connected_t, ble_gap_evt_adv_report t
and bl e gap_evt scan req_report t are affected. */

ble gap_addr _t.addr _id peer; /* Set to true if |RK matched */
ble _gap_addr_t.addr; /* Set to the identity address of the peer

i.e the one in the identity Iist matching the
peer |RK */

/* Set to the private resol vabl e address of the peer.*/

..

Nordic Semiconductor

/*

/* S132 v2.0 API

usage */

I RK of the Private device. */

ble gap_irk_t irkl ={ .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble_gap_irk_t * whitelist_irk[1] = {& rki1};
ble gap whitelist t whitelist = {

Page 44 of 79

.pp_irks = &hitelist _irk, .irk_count = 1,};

bl e _gap_scan_parans_t scan_paranms = {
.selective = true, p_whitelist = &hitelist};
sd_bl e _gap_connect (NULL, &scan_parans, &conn_parans);

/* S132 v3.0 APl usage */

bl e_gap_addr _t peer_addr = {
.addr _id_peer = 1;
.addr _type = BLE _GAP_ADDR TYPE PUBLI C
.addr = {Ox1A, Ox2A, O0x3A, O0x4A, O0x5A, Ox6A}

}

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);

LE Ping

The LE ping feature is now supported by the SoftDevice. A new timeout source BLE_GAP_TI MEQUT_SRC_AUTH_PAYLQAD has been added. All applications must handle this event from the SoftDevice according
to the APl documentation. Refer to the description of LE Ping in the New functionality section for more details.

Required changes:

/* S132 v3.0 APl usage */
/* lgnore the authenticated payload tineout event */ E
case BLE_GAP_TI MEQUT_SRC_AUTH_PAYLQAD:
br eak; |
Page 45 of 79

Nordic Semiconductor

Configurable ATT_MTU

The feature of configurable ATT_MTU is now supported by the SoftDevice. A new event BLE_GATTS_EVT_EXCHANGE_MIU_REQUEST has been added. All applications must handle this event from the
SoftDevice according to the APl documentation. Refer to the description of configurable ATT_MTU in the New functionality section for more details.

Required changes:

/* S132 v3.0 APl usage */

/* Respond with default ATT_MIU, if peer initiates an ATT_MIU exchange procedure. */
case BLE GATTS_EVT_EXCHANGE_MIU_REQUEST:
sd_ble _gatts_exchange ntu_reply(p_ble_evt->evt.gatts_evt.conn_handl e, GATT _MIU_SI ZE DEFAULT);

br eak;

New functionality

Configurable ATT_MTU

The Configurable ATT_MTU feature enables the ATT protocol to use packets longer than the default of 23 bytes. This can be useful for example to reduce complexity of GATTC and GATTS procedures used to
handle longer Characteristic Value, where a single "Write Request" can be used instead of the whole "Queued Writes" procedure.

APl updates

A new BLE initialization structure, bl e_gatt _enabl e_par ans_t , has been added to bl e_enabl e_par ans_t for configuring the maximum ATT_MTU the SoftDevice can send or receive.

Anew SV call, sd_bl e_gattc_exchange_nt u_request (), has been added for starting an ATT_MTU exchange.

Anew SV call, sd_bl e_gatts_exchange_ntu_reply(), has been added for setting the ATT_MTU in ATT_MTU response.

A new event, BLE GATTS EVT_EXCHANGE_MrU_REQUEST, has been added to BLE_GATTS_EVTS to notify that an ATT_MTU request has been received. sd_bl e_gatts_exchange_mtu_reply() m

ust be called by the application, after this event has been received, to continue the ATT_MTU exchange procedure.
® Anew event, BLE_GATTC_EVT_EXCHANGE_MIU_RSP, has been added to BLE_GATTC_EVTS to notify that an ATT_MTU response has been received. This event marks the end of the ATT_MTU

exchange procedure and indicates the server ATT_MTU.

Usage

Nordic Semiconductor Page 46 of 79

®* ATT_MTU exchange can be initiated locally or by peer device.

® HVx and service changed cannot run while a local client initiated ATT_MTU exchange is active. The SV calls sd_bl e_gatts_hvx() andsd_bl e_gatts_servi ce_changed() will return

NRF_ERROR_INVALID_STATE if a local client initiated ATT_MTU exchange is ongoing.
® Following is the pseudo code for case where ATT_MTU exchange is initiated by application:

bl e_enabl e _parans_t enabl e_parans = {0};

/[* Set maxi mum ATT_MIU t he SoftDevice can send or receive */
enabl e_parans. gatt _enabl e_parans. att_ntu = 158;

/* Set other BLE Initialization paraneters */

/* Enable the BLE Stack */
sd_bl e_enabl e(&nabl e_paranms, ...);

uint16_t conn_handl e;
/* Establish connection */

[* Start ATT_MIU exchange */
sd bl e _gattc_exchange ntu_request(conn_handle, client_rx mu);

uintlée t effective att ntu;
uintl6 t server_rx_mu;
/* Handl e the event */
case BLE GATTC EVT_EXCHANGE MTU_RSP:
server _rx_ntu = p_ble evt->evt.gattc_evt. parans. exchange_ntu_rsp. server_rx_ntu;

Nordic Semiconductor

Page 47 of 79

/* New ATT_MIU is now applied to GATT procedures for this connection */

/ *Not e

The SoftDevice sets ATT_MIU to the mnini num of:
- The dient RX MIU val ue from BLE GATTS _EVT_ EXCHANGE MruU REQUEST, and
- The Server RX MU val ue.

However, the SoftDevice never sets ATT_MIU | ower than GATT_MIU SI ZE DEFAULT.
*/
[* Store ATT_MIU for |ater use */
effective_att _ntu = M N MAX(GATT_MIU_SI ZE DEFAULT, server _rx_nmtu)
, client _rx ntu

LE Ping

The LE Ping feature can be used by the application to configure a link to try to have at least one authenticated packet exchange within a configurable timeout period. If the peer device does not send an
authenticated packet within the timeout, a timeout event is generated to notify this to the application.

APl updates

® A new GAP option, BLE_GAP_OPT_AUTH_PAYLOAD_TI MEQUT, has been added to set the authenticated payload timeout.
® A new GAP timeout source, BLE_GAP_TI MEOUT_SRC_AUTH_PAYLOAD, has been added to indicate that the authenticated payload timer has expired.

/* Enabl e the BLE Stack */

/* Establish connection */

Nordic Semiconductor Page 48 of 79

/* Authenticated payload tinmer runs with default val ue.

Set the authenticated payload tineout for the link, if required to be something else then the default */
gap_opt.auth_payl oad_ti nmeout. conn_handl e = connecti on_handl e;

gap_opt.auth_payl oad_ti neout. aut h_payl oad_tineout = 1000;

gap_opt _set (BLE_GAP_OPT_AUTH PAYLOAD TI MEQUT, &gap_opt);

/* Handl e the event */
case BLE _GAP_TI MEQUT SRC AUTH PAYLOQAD:

/* Handling of the event is application dependent. It can be ignored if not used by application. */
br eak;

LE Data Packet Length Extension (DLE)

The LE Data Packet Length Extension feature enables the SoftDevice to use longer packets on the link layer level. Now link layer packets with up to 251 bytes payload are supported.
APl updates

* A new GAP option, BLE_GAP_OPT_EXT_LEN, has been added to set the maximum Link Layer PDU length to be used in DLE.
* Anew event, BLE_EVT_DATA_LENGTH_CHANGED, has been added to indicate that the Link Layer PDU length has changed.

Usage

® Default max Link Layer PDU is 27 bytes.
® BLE_GAP_OPT_EXT_LEN changes the max length for all future links.
® Example pseudo code:

/* Enabl e the BLE Stack */

Nordic Semiconductor Page 49 of 79

/* Set max Link Layer PDU length, if application wants it to be nore than 27bytes */
gap_opt.ext _len.rxtx_max_pdu_payl oad_size = 54; //Exanple: set nax length to 54bytes
gap_opt _set (BLE_GAP_OPT_EXT_LEN, &gap_opt);

/* Establish connection */

/* Handl e the event */
case BLE_EVT_DATA LENGTH CHANGED:
/* Handling of the event is application dependent. It can be ignored if not used by application. */

LL Privacy

The LL Privacy feature provides similar functionality as the privacy in the previous version of the SoftDevice. In addition, it supports new use cases like enabling privacy for directed advertising and advanced
filter policy for scanning.

APl updates
® New SV calls, sd_bl e_gap_privacy_set() andsd_bl e_gap_privacy_get (), are added to set and get the privacy settings. bl e_gap_pri vacy_par ans_t is defined to be used with these calls.
® The GAP option BLE_GAP_OPT_PRI VACY is removed. The SV calls sd_bl e_gap_privacy_set () andsd_bl e_gap_pri vacy_get () should be used instead.
® A new GAP characteristic, BLE_UU D_GAP_CHARACTERI STI C_CAR, has been added for Central Address Resolution.
® The SV calls sd_bl e_gap_address_set () andsd_bl e_gap_address_get () have been renamed to sd_bl e_gap_addr _set () and sd_bl e_gap_addr _get () respectively.
® Anew SV call,sd_bl e _gap_whitelist_set(),hasbeen added to set the whitelist. The configured whitelist is shared among all BLE roles.
® Anew SV call, sd_bl e _gap_device_identities_set(), hasbeen added to set the identity list. The configured identity list is shared among all BLE roles.
® New definitions, BLE_GAP_PRI VACY_MODE_OFF and BLE_GAP_PRI VACY_MCODE_DEVI CE_PRI VACY, have been added.
® Two new GAP error codes, BLE_ERROR_GAP_DEVI CE_| DENTI TI ES_| N_USE and BLE_ERROR_GAP_DEVI CE_| DENTI TI ES_DUPLI CATE, have been added.
L]

Address cycling, BLE_GAP_ADDR_CYCLE_MODE_NONE and BLE_GAP_ADDR_CYCLE_MODE_AUTO, is removed from GAP APl sd_bl e_gap_addr _set () . Address will always cycle if privacy is enabled
by sd_bl e_gap_privacy_set ().

New definitions, BLE_GAP_DEFAULT_PRI VATE_ADDR CYCLE_| NTERVAL_S and BLE_GAP_NAX_PRI VATE_ADDR_CYCLE_| NTERVAL_S, have been added for address cycle intervals.

® BLE_GAP_WH TELI ST_I RK_MAX_COUNT is renamed to BLE_GAP_DEVI CE_| DENTI Tl ES_MAX_COUNT.

®* Anew field, addr _i d_peer, has been added in the bl e_gap_addr _t ype_t, which indicates an IRK/identity match of a peer.

Nordic Semiconductor Page 50 of 79

® ble_gap_whitelist_t isremoved because it is not used anymore. This also means that it is removed from bl e_gap_adv_parans_t and bl e_gap_scan_parans_t.sd_bl e_gap_whitelist_s
et () is supposed to be used instead for setting the whitelist.

® bl e_gap_scan_parans_t is updated. "adv_di r _r eport " field has been added to enable extended scanner filter policies.

® bl e_gap_evt _connect ed_t is updated. "own address","i rk_mat ch"and"i r k_nmat ch_i ndex" fields are removed. "i r k_mat ch" is now given by "addr _i d_peer " fileld in "peer _addr ".

® bl e_gap_evt_adv_report _t isupdated and a new field, "di r ect _addr ", has been added to support extended scanner filter policy.

Usage

® Example pseudo code using the new privacy API:

/* Enabl e the BLE Stack */

/* Enable privacy */

bl e _gap_privacy parans_t privacy_parans = {0};

privacy_parans. privacy_node = BLE _GAP_PRI VACY_MODE_DEVI CE_PRI VACY

privacy_parans. private_addr_type = BLE _GAP_ADDR TYPE RANDOM PRI VATE RESOLVABLE;
privacy_paramns. private_addr_cycle_s = 0; /* Default cycle period will be used. */
privacy_ parans.p_device irk = &wn_irk

sd_bl e_gap_privacy_set (&privacy_parans);

/* start scanner and get adv_report */

/* Connect to chosen advertiser(advertiser using private address). */
bl e _gap_addr _t peer_addr = {

.addr _i d_peer = 0;

.addr _type = BLE GAP_ADDR TYPE RANDOM PRI VATE RESOLVABLE

.addr = {OxCC, 0xBB, OxAA, O0xAA, 0xBB, O0xCC};

Nordic Semiconductor Page 51 of 79

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);

[...]

/* Perform bonding */

[...]

/* Wth I RK exchanged, the identity list can be configured to enabl e address resol ution. */
ble gap_id key t identity = {
.id_addr_info = {
.addr _type = BLE_GAP_ADDR TYPE _PUBLI C
.addr = {Ox1A, Ox2A, Ox3A, O0x4A, Ox5A, Ox6A},},
.id_info = {
.irk = { 0x01, 0x02, 0x03 /*...*/},}
s
ble gap_id key t * identities[] ={ & dentity };
sd ble gap_identities set(& dentities, NULL, 1);

[...]

/* For all future connections, IRKfiltering will be perforned. */
bl e _gap_addr _t peer_addr = {
.addr _i d_peer = 1;
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {Ox1A, Ox2A, Ox3A, O0x4A, Ox5A, Ox6A}
}

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);
[...]

/* It is also possible to use extended filter policy to performI|IRK resolution on directed adv reports. */

Nordic Semiconductor Page 52 of 79

bl e _gap_scan_parans_t scan_par ans;
scan_parans. adv_dir_report = 1;
sd_bl e_gap_scan_start(&scan_parans);

[...]

/* Handl e the event */
case BLE_GAP_EVT_ADV_REPORT
/* Adv report will also be generated for directed adverti senents where
the initiator field is set to a private resol vable address, even if
the address did not resolve to an entry in the device identity list.*/
if (ble_evt->adv_report.type == BLE_GAP_ADV_TYPE_ADV_DI RECT_I ND)
{
if (ble_evt->adv_report.direct_addr.addr_type ==
BLE_GAP_ADDR _TYPE_RANDOM PRI VATE_RESOLVABLE)

{

// The initiator address is not resolved

}

el se

{

// The initiator address is resolved

}
}

Connection Event Length Extension

This feature can be used to dynamically extend the connection event length when possible to send extra packets compared to the configured bandwidth in a connection interval.

APl updates

® A new option, BLE_COVON_OPT_CONN_EVT_EXT, has been added to BLE_COMMON_OPTS for enabling/disabling of this feature.

Nordic Semiconductor Page 53 of 79

Usage

® This feature of dynamic extension of connection event length is disabled by default.
® The BLE_COVMON_OPT_CONN_EVT_EXT option can be used to enable/disable this feature. This will result in enabling/disabling this feature for all currently active links and also for all future links.

Full length device name

The maximum possible length of the device name has been increased, and it is now possible to set a device name up to 248 bytes.

APl updates

® A new parameter, bl e_gap_devi ce_nane_t, has been added to sd_bl e_enabl e() for setting full length device name.

Usage

® Example pseudo code:

bl e_enabl e_parans_t enabl e_parans = {0};

/* Set the device nane, if application wants to set anything | onger than BLE _GAP_DEVNAME DEFAULT_LEN */
bl e _gap_device _nane_t device_nane = {0};

uint8 t device_nane_buff[BLE GAP_DEVNAVE MAX LEN] = "My very long exciting application nane";

devi ce_nane. vl oc = BLE_GATTS VLOC STACK; /*Note: Device nane will occupy space in Attribute Table.*/
devi ce_nane. p_val ue = devi ce_nane_buff;

devi ce_nane. max_| en = si zeof (devi ce_nanme_buff);

device nane.current _|len = strlen((char *)device _nane_buff);

enabl e_par ans. gap_enabl e_par ans. p_devi ce_nane = &devi ce_nane;

/* Set other BLE Initialization paraneters */
sd_bl e_enabl e(&nabl e_parans, ...);

Nordic Semiconductor Page 54 of 79

Max BLE event length calculation

The maximum size of a BLE event can now be calculated to optimize the size of event buffer memory.

APl updates

®* Anew macro, BLE EVTS _LEN MAX, has been added to find out the maximum size of BLE events.

Usage
e ad AP
uint8 t evt[sizeof (ble_evt_t) + BLE L2CAP_MIU_DEF] ;
uintlé t evt _len = sizeof(evt); i
errcode = sd_ble evt _get(evt, &evt |en);
/* New API: */
uint8_t evt[BLE_EVTS LEN MAX(GATT_MTU_SI ZE_DEFAULT)];
uintl6 t evt _len = sizeof(evt); i
errcode = sd_ble evt _get(evt, &evt |en);

Other miscellaneous updates

® The SoftDevice Information Structure has been updated and new access macros have been added. Note that this these updates are for Nordic internal use and should not be used by the application.
® New access macros for general purpose retention registers have been added.

API diff

Nordic Semiconductor Page 55 of 79

A diff of the API changes between versions s132_nrf52_3.0.0 and s132_nrf5x_2.0.1 is provided with this release. Refer to the file s132_nrf52_3.0.0_API-update.diff.

Nordic Semiconductor Page 56 of 79

s13x_nrf5x_2.0.1

This section describes how to migrate to s13x_nrf5x_2.0.1 from s130_nrf51_1.0.0.

Required changes

SoftDevice size
The size of the SoftDevice has changed requiring a change to the application project file.
For Keil this means:

® Go into the properties of the project and find the Target tab
® Change IROM1 Start to 0x1B000 (s130) or 0x1C000 (s132).

If the project uses a scatter file or linker script instead, those must be updated accordingly.

SVC number changes

The SVC numbers in use by the SoftDevice have been changed so the application needs to be recompiled against the new header files.

Fault handling

The SoftDevice has changed the way it handles unrecoverable errors, now known as "faults”. SoftDevice assertions were reported to the application in previous releases, now a wider range of faults has been
introduced and a new handling mechanism. The new format for the fault handler to be supplied to sd_sof t devi ce_enabl e() reflects this.

The old

typedef void (*softdevice_assertion_handler_t)(uint32_t pc, uintl6_t |ine_nunber, const uint8 t * p file_nane);
is now replaced by:

typedef void (*nrf_fault_handler_t)(uint32_t id, uint32_t pc, uint32_t info);

The application code must now provide a fault handler in the above format. The source of the fault is provided in the fault ID parameter (i d) and the value of the program counter at the time of the fault is
provided in the program counter parameter (pc) . So far the SoftDevice defines the following fault IDs:

Nordic Semiconductor Page 57 of 79

® NRF_FAULT_I D _SD ASSERT: The SoftDevice has triggered an assertion. Record the value of the pc parameter and make it available to the Nordic support team to start an internal investigation.
® (s132only) NRF_FAULT_| D_APP_MEMACC: The application has triggered an unallowed memory access. The value of the pc parameter will contain the address of the instruction that executed the
invalid memory access, or the address of the instruction following the violation. To find out the filename and line number within your application source code that correspond to the pc you can use the

appropriate tool provided with your toolchain. For example if your linker outputs files in the ELF format you can use the addr2line tool which is part of the GNU ARM Embedded toolchain for this purpose.
Note that you don't need to have compiled with GCC to use addr2line, and that there are several common filename extensions for ELF files, e.g. .elf, and .axf.

/1l Syntax
arm none- eabi - addr 2l i ne <pc> -e application.elf

/1 Exanpl e, pc=0x0ldaba
$ arm none- eabi - addr 21 i ne Ox0lda6a -e app_beacon. el f
C:\ dev\ app_beacon\ src\ mai n. c: 34

Please note that as part of this transition from asserts to faults the previously distributed sof t devi ce_assert . h file is no longer part of the public API.

Oscillator configuration

The configuration of the 32 kHz RCOSC calibration in sd_sof t devi ce_enabl e() has been made more flexible. It now supports more calibration intervals, and the ability to combine temperature and time
triggered calibration.

sd_softdevi ce_enabl e(nrf_clock_|If_cfg_t const * p_clock_|If_cfg, nrf_fault_handler_t fault_handler));

/1 Exanpl e configuration equivalent to the old NRF_CLOCK LFCLKSRC RC 250 PPM TEMP_1000Ms_CALI BRATI ON
nrf_clock I f_cfg t rc_cfg = {

.source = NRF_CLOCK _LF_SRC RC,

.rc_ctiv = 4, /1 Check tenperature every 4 * 250ns

.rc_temp_ctiv =1, // Only calibrate if temperature has changed.

b
sd_softdevice_enabl e(& c_cfg, &app_fault_handler);

/1 Exanpl e configuration equivalent to the old NRF_CLOCK LFCLKSRC XTAL_ 75 PPM
nrf_clock_|If_cfg t xtal _cfg = {

Nordic Semiconductor Page 58 of 79

.source = NRF_CLOCK LF_SRC XTAL,
.xtal _accuracy = NRF_CLOCK LF XTAL_ACCURACY_75_PPM

H

sd_softdevi ce_enabl e(&tal _cfg, &app_fault_handl er);

/'l Recommended configuration for using the RC oscillator with s132 (see nrf_sdmh for details)

nrf_clock |If_cfg t rc_cfg = {
.source = NRF_CLOCK _LF_SRC _RC,
.rc_ctiv = 16, /1 Check tenperature every 4 seconds

.rc_temp_ctiv = 2, // Calibrate at |least every 8 seconds even if the tenperature hasn't changed

s

sd_softdevice_enabl e(& c_cfg, &app_fault_handler);

App priorities
The enumeration NRF_APP_PRI ORI Tl ES has been removed. Application developers must use the interrupt priority levels directly instead.
For s130 the interrupt priority levels available to the application are: 1 and 3.

For s132 the interrupt priority levels available to the application are: 2, 3, 6 and 7.

SEVONPEND flag and high interrupt priorities

Applications must not modify the SEVONPEND flag in the SCR register when running in priority level 1 for s130 and priority levels 2 or 3 for s132.

Type definitions
Type definitions for certain basic types have been removed. The following type definitions must be replaced with ui nt 8_t :
nrf_power_node_t, nrf_power _failure_threshold_t, nrf_radio_notification_distance_t, nrf_radio_notification_type_t

and the following must be replaced with ui nt 32_t :

Nordic Semiconductor

Page 59 of 79

nrf_app_irqg_priority_t nrf_power_dcdc_node_t

MBR size

The macro MBR_SI ZE has been moved to nrf _nbr . h.

Changes to the sd_nvic_* API

The sd_nvi c_* API functions have changed from being SV calls into the SoftDevice to being static functions implemented in a new header file, nr f _nvi c. h. This header file must be included in all source files
that call any API function than begins with sd_nvi c_. If a project includes nr f _nvi c. h in any of its source files, one of them must declare and zero initialize a global instance of nrf _nvi c_state_t inthe
form:

nrf_nvic_state_t nrf_nvic_state = {0};

Flash protection

The flash protection API now takes 4 parameters, only the first 2 of which are applicable for the s130:

sd_flash_protect(uint32_t block_cfgO, uint32_t block _cfgl, uint32_t block _cfg2, uint32_t block_cfg3);

Radio Timeslot APl macro changes

The macros for high frequency clock configuration have been renamed in the Radio Timeslot API:

* NRF_RADI O HFCLK_CFG DEFAULT and NRF_RADI O HFCLK_CFG FORCE_XTAL
* are now NRFE_RADI O HFCLK_CFG_XTAL_GUARANTEED and NRF_RADI O HFCLK_CFG_NO_GUARANTEE

The default is now NRF_RADI O HFCLK_CFG_XTAL_GUARANTEED which guarantees that the high frequency clock source is the crystal for the whole duration of the timeslot. This should be the preferred option
for events that use the radio or require high timing accuracy.

SoftDevice runtime configuration

The number of Vendor Specific UUIDs, connection count and bandwidth are now configurable on sd_bl e_enabl e() using the new parameters in the substructures of bl e_enabl e_par ans_t . Those new
parameters are listed below:

® vs_uui d_count: The number of Vendor Specific UUID bases that the SoftDevice will reserve space for. Formerly this number was fixed and set to BLE_UUl D_VS_MAX_COUNT.

® p_conn_bw count s: The optional connection bandwidth configuration structure. This determines the amount of memory that the SoftDevice will reserve for packets. See the bandwidth configuration
section for more details.

® periph_conn_count : The total amount of concurrent connections as a peripheral that will be available to the application.

® central _conn_count : The total amount of concurrent connections as a central that will be available to the application.

Nordic Semiconductor Page 60 of 79

® central _sec_count: The total amount of concurrent pairing procedures that will be available to the application to be shared among all connections as a central.

If the maximum number of connections supported by the SoftDevice is exceeded in the call to sd_bl e_enabl e() the SoftDevice will return NRF_ERROR_CONN_COUNT.

SoftDevice RAM usage

At runtime the IC's RAM is split into 2 regions: The SoftDevice RAM region (between 0x20000000 and APP_RAM_BASE-1) and the application RAM region (between APP_RAM_BASE and the call stack). The
start address of the application RAM region (APP_RAM_BASE) is dependent on the configuration provided to the SoftDevice in the call to sd_bl e_enabl e() .

The sd_bl e_enabl e() call has a new parameter.

® uint32_t sd_ble_enabl e(bl e_enable_parans_t * p_bl e_enabl e_par ans)
® uint32_t sd_ble_enabl e(bl e_enable_parans_t * p_ble_enabl e_parans, uint32_t * p_app_ram base)

The new *p_app_r am base parameter should be set by the application to APP_RAM_BASE. The SoftDevice will return the minimum APP_RAM_BASE required by the SoftDevice for the configuration. If the
APP_RAM_BASE provided by the application is smaller than the APP_RAM_BASE returned by the SoftDevice, sd_bl e_enabl e() will return NRF_ERROR_NO_MEM

Note: The nRF5 SDK provides definitions for common configurations and several toolchains. You can skip the rest of this section if you plan to use the nRF5 SDK examples directly and do not intend to create
new configurations.

The application must always provide the current starting address of its RAM area (as defined in the project file, scatter file or linker script) as the *p_app_r am base parameter to sd_bl e_enabl e() . Failure to
do so might result in the SoftDevice overwriting the application memory area and/or memory access violations. Most toolchains provide a linker symbol for the starting address of their RAM area, referred to as __
LI NKER_APP_RAM BASE in this documentation.

The following table shows examples of linker symbols that can define __ LI NKER_APP_RAM BASE for different toolchains. The actual value will depend on the project file, scatter file or linker script settings.

Toolchain LI NKER_APP_RAM BASE
ARMCC/Keil | mage$$RW | RAML$$Base
IAR __ | CFEDI T_region_RAM start__

GCC __data_start__

The recommended approach to obtaining and maintaining the required APP_RAM_BASE for the application is the following:

1. Inyour project file, scatter file or linker script, set the starting address of your application's RAM (APP_RAM_BASE) to at least the minimum APP_RAM_BASE specified in the release notes.
2. In your application's source code, set the value of *p_app_ram base to __LI NKER_APP_RAM BASE.

3. Set the desired parameters to be provided to sd_bl e_enabl e() .

4. Compile, link and run the application.

Nordic Semiconductor Page 61 of 79

5. If the amount of memory assigned to the SoftDevice by *p_app_r am base is large enough to fit the configuration, sd_bl e_enabl e() will return NRF_SUCCESS, otherwise it will return NRF_ERROR_NO
_MEM

6. Onreturn of sd_bl e_enabl e(), *p_app_r am base will contain the APP_RAM_BASE required for the given configuration.

7. In your project file, scatter file or linker script, update the starting address of your application's RAM (APP_RAM_BASE) to *p_app_r am base from step 6, and recompile the application.

Please note that it is possible to run the application with APP_RAM BASE set higher than the minimum required by the selected configuration. Doing so will result in an area of memory being unused located
between the SoftDevice's and the application's memory areas.

Enabling the BLE Stack

bl e_enabl e_parans_t parans;
uint32_t retv;
uint 32_t app_ram base;

menset (&par ans, 0x00, sizeof (parans));

/* set the nunber of Vendor Specific UUDs to 5 */

par ans. cormon_enabl e_par ans. vs_uui d_count = 5;

/* this application requires 1 connection as a peripheral */

par ans. gap_enabl e_par ans. peri ph_conn_count = 1,

/* this application requires 3 connections as a central */

par ans. gap_enabl e_parans. central _conn_count = 3;

/* this application only needs to be able to pair in one central link at a time */
par ans. gap_enabl e_parans. central _sec_count = 1,

/* we require the Service Changed characteristic */

parans. gatts_enabl e_parans. servi ce_changed = 1,

/* the default Attribute Table size is appropriate for our application */
parans. gatts_enabl e_parans. attr_tab_size = BLE GATTS ATTR TAB_SI ZE DEFAULT;

/* set app_rambase to the starting nenory address of the application RAM
obtained directly fromthe Iinker */

app_ram base = __ LI NKER_APP_RAM BASE;

/* enable the BLE Stack */

retv = sd_bl e_enabl e(&ar ans, &app_ram base);

i f(retv == NRF_SUCCESS)

Nordic Semiconductor Page 62 of 79

/* Verify that __ LI NKER_APP_RAM BASE mat ches the SD cal cul ati ons */
i f(app_rambase != __ LI NKER_APP_RAM BASE)
{
[* The application's starting RAM address is higher than the one required for this
confi gurati on.
An area of nenory will remain unused between the SoftDevice and the application nenory areas.
To detect this, place a breakpoint here and/or output (app_ram base)
through a debug interface.

*/
}
}
else if(retv == NRF_ERROR_NO_MEM
{
[* The application's starting RAM address is | ower than the one required for this configuration.
This is an unrecoverable error because the SoftDevice and the application menory areas overl ap.
To detect this, place a breakpoint here and/or output (app_ram base)
t hrough a debug interface.
*/
while(1){}
}

Default Attribute Table size changed

The default Attribute Table size has gone down from 0x600 bytes to 0x580 bytes. If the application is not setting a custom Attribute Table size and it is filling it completely, it will now need to configure a larger,
non-default memory area size dedicated to it (bl e_gatts_enabl e_parans_t::attr_tab_si ze) in the call to sd_ble_enable().

(s130 only) CPU and Radio mutual exclusion option removed

The BLE_COVMON_OPT_RADI O_CPU_MJTEX option is no longer part of the SoftDevice API so applications making use of it will need to remove all code using it. The option is no longer necessary since this
version of the SoftDevice is only compatible with IC revision 3 of the nRF51 series, which no longer requires mutual exclusion between the radio and the CPU during operation.

TX packet management

Nordic Semiconductor Page 63 of 79

The user TX packet management has been modified to adapt it to the fact that different connections can now make different packet counts available to the application, depending on the role and bandwidth
configuration. This means that the application now needs to obtain the TX packet count after each connection is established, and needs also to keep an independent variable for the TX packet count of each

connection.
The prototype has been therefore renamed and adapted:

® uint32_t sd_ble_tx_ buffer_count_get(uint8_t *p_count)
® uint32_t sd_ble_tx_packet_count_get(uint1l6_t conn_handle, uint8_t *p_count)

Here's an example of an application obtaining the TX packet count for a particular connection and storing it in a global variable for later use:

..

case BLE _GAP_EVT_CONNECTED:
uint8 t count;
uintl6_ t conn_handl e = p_ble_evt->evt.gap_evt.conn_handl e;
sd bl e _tx_packet count get (conn_handl e, &count);
/* store TX packet count for |ater use */
t x_packet count s[conn_handl e] = count;
br eak;

TX power setting
The sd_bl e_gap_t x_power _set () SV call now accepts the following values as the lowest power setting:

® s130: -30dBm
® s132:-40dBm

If the application code made use of values different from those in its minimum power output mode it will have to be adapted it to conform with the changes.

Additional link field in the key distribution bitfield

The bl e_gap_sec_kdi st _t bitfield now includes an additional | i nk bit. This must always be set to 0 by the application since it is only intended for use with dual-mode BR/EDR+BLE solutions.

Additional lesc field in the encryption information structure

A new | esc bit has been added to the bl e_gap_enc_i nf o_t structure. It is important to initialize this bit correctly when loading stored security keys, so that the SoftDevice can set the connection's security
level accordingly.

Nordic Semiconductor Page 64 of 79

Additional fields in the security parameters
Two new fields have been added to bl e_gap_sec_parans_t:

® | esc: This enables LE Secure Connections locally when starting a pairing or bonding procedure. If the application does not wish to use LE Secure Connections and instead use legacy pairing simply set
this bit to 0.

® keypr ess: This enables keypress notifications locally when starting a pairing or bonding procedure. Keypress naotifications can be used whenever the Passkey Entry pairing method is selected, both in
legacy pairing or LE Secure Connections.

Both fields need to be initialized to the desired value by applications transitioning to this SoftDevice version.

Security keys identification by locality instead of by GAP role

The security keys included in bl e_gap_sec_keyset _t are no longer identified by GAP role, but rather by associating them with the local device (own) or with the remote device (peer):

® bl e_gap_sec_keyset _t::keys_periphandbl e_gap_sec_keyset _t::keys_central are now expressed in terms of bl e_gap_sec_keyset _t:: keys_own and bl e_gap_sec_keyset _t::
keys_peer

® bl e_gap_sec_parans_t:: kdi st _periphandbl e_gap_sec_parans_t:: kdi st _central are now expressed in terms of bl e_gap_sec_parans_t: : kdi st _own and bl e_gap_sec_par ans
_t::kdist_peer

® ble_gap_evt_auth_status_t::kdist_periphandble_gap_evt_auth_status_t::kdist_central are now expressed in terms of bl e_gap_evt _auth_status_t: : kdi st _own and bl e
_gap_evt_auth_status_t:: kdist_peer

For example, a multi-role application wanting to distribute its own LTK when acting as a peripheral, but only its IRK when acting as a central and that always accepts IRKs from the peer no matter the role:

/* Connected */
i f(own_role == BLE_GAP_ROLE_PERI PH)

{

sec_par ans. kdi st_own. enc = 1;
}
el se /* BLE_GAP_ROLE_CENTRAL */
{

sec_parans. kdi st_own.id = 1;
}

sec_parans. kdi st_peer.id = 1;

Identity key distribution change

Nordic Semiconductor Page 65 of 79

When distributing Identity keys during a bonding procedure, the handling of the pointers within the bl e_gap_sec_keyset _t structure has changed in the following manner:

® Setting bl e_gap_sec_keyset _t::keys_own:: p_i d_key to NULL remains unchanged: the stack will continue to make use of the currently set Bluetooth address and IRK and distribute them to the
peer, but the application will not receive a copy in its memory

® Setting bl e_gap_sec_keyset _t:: keys_own:: p_i d_key to a valid pointer to a location in the application memory will distribute the same Bluetooth address and IRK as above (the currently set
ones) and also make them available to the application

That means that if the application distributed a custom Bluetooth address and IRK using the following deprecated functionality:
/* Connected */
keyset. keys own.p_id _key = &app_custom.id_key;
keyset . keys_own. p_i d_addr _i nfo = &cust om bdaddr;
sd_bl e_gap_sec_parans_repl y(conn_handl e, BLE GAP_SEC STATUS SUCCESS, &sec_parans, &keyset);

/* Connected */

ble opt _t opt;

sd_bl e_gap_address_set (BLE_GAP_ADDR CYCLE _MODE_NONE, &app_custom.id_key.id_addr _info);
opt.gap_opt. privacy.p_irk = &pp_custom.id_key.id_info;

opt.gap_opt. privacy.interval _s = APP_ADDR_REFRESH_S;

sd_bl e _opt _set (BLE _GAP_OPT_PRI VACY, &opt);

keyset . keys_own. p_i d_key = &distributed_id_key;

sd_bl e_gap_sec_parans_repl y(conn_handl e, BLE GAP_SEC STATUS SUCCESS, &sec_parans, &keyset);

GATT Server Read/Write events: attribute context removed

The bl e_gatts_attr_context_t type has been removed from the GATT Server API. The two structures that included an instance of it as a member now include instead a bl e_uui d_t instance to identify
the attribute:

® ble_gatts_evt_wite_t::context hasbeenreplaced by bl e_gatts_evt_wite_t::uuid
® ble_gatts_evt_read_t::context has beenreplaced by bl e_gatts_evt_read_t::uuid

Nordic Semiconductor Page 66 of 79

In practical usage most applications store the handles associated with a particular characteristic when populating the Attribute Table. Calculating the context for each incoming read or write operation was an
expensive and time-consuming task, and therefore the field has been removed and instead replaced by the attribute UUID. The combination of attribute handle and attribute UUID provided in the event structure
should be enough for the application to identify the attribute within the set that has been previously populated.

GATT Server Authorizable Write Commands

Whenever the application enables write authorization for a characteristic value or a descriptor in the Attribute Table (bl e_gatts_attr_nd_t: : w _aut h), all incoming write operations will now require
application authorization. In particular this now includes Write Commands (also called Write Without Response) which will arrive in the same event form (BLE_GATTS_EVT_WRI TE) but with a new field set (bl e_g
atts_evt_wite_t::auth_required)toindicate to the application that the data has not been written into the Attribute Table. Upon handling of the event the application can decide whether it wants to write
the incoming data to the Attribute Table using sd_bl e_gatts_val ue_set () or discard it.

Handling incoming authorizable Write Commands

case BLE GATTS_EVT_WRI TE:
uintl6_t conn_handle = p_ble evt->evt.gatts_evt.conn_handl e;
uintlé t attr_handle = p_ble evt->evt.gatts_evt. parans. wite. handl e;
uint16_t of fset p_ble evt->evt.gatts_evt. paranms. wite. offset;
uint8 t *p_data p_ble evt->evt.gatts_evt. parans. wite. data;
uintlé6 t dlen = p_ble evt->evt.gatts_evt.parans.wite.len;
if(p_ble evt->evt.gatts _evt.parans.wite.auth_required)

{
/[* incoming wite command on an attribute requiring authorization,
val idate the inconming data pointed to by p_data */
i f(app_data_authorize(p_data, offset, dlen))
{
/[* the application manually wites the incomng data (p_data) to the Attribute Table */
bl e_gatts_val ue_t val ue;
val ue.len = dl en;
val ue. of fset = of fset;
val ue. p_val ue = p_dat a;
sd_bl e_gatts_val ue_set(conn_handl e, attr_handl e, &val ue);
}
}
br eak;

Nordic Semiconductor Page 67 of 79

GATT Server Write Authorization and peer data

Applications making use of authorization to handle incoming write operations, and in particular Write Requests and app-handled Queued Writes, will now have to store the incoming data to be provided later to
the SoftDevice. Depending on how the application handles the authorization procedure, this can be done by providing the same pointer contained in the event field, or copying the data into a temporary storage

area if required.

® Authorizing directly in the event handler:

case BLE_GATTS EVT_RW AUTHORI ZE_REQUEST:
if(p_ble evt->evt.gatts _evt.parans. authori ze_request.type == BLE GATTS AUTHORI ZE TYPE VRl TE)

{
uintl16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handl e;
uintl6 t offset = p_ble_evt->evt.gatts_evt.parans. authori ze_request.request.wite. offset;
uintlé6 t dlen = p_ble evt->evt.gatts _evt.parans. authorize request.request.wite.len;
uint8 t *p data = p_ble evt->evt.gatts _evt.parans. authori ze_request.request.wite.data;
[* incoming wite command on an attribute requiring authorization, validate the data */
i f(app_data_authorize(p_data, offset, dlen))
{
ble gatts rw authorize reply parans_t auth_reply;
auth_reply.type = BLE GATTS _AUTHORI ZE_TYPE_WRI TE;
auth_reply. paranms.wite.gatt_status = BLE GATT_STATUS_ SUCCESS;
auth_reply. params. wite.update = 1
auth_reply. parans.wite. of fset = offset;
auth_reply.parans.wite.len = dlen
/* reuse the same pointer obtained fromthe event */
auth_reply.parans.wite.p_data = p_dat a;
sd ble gatts rw authorize reply(conn_handle, &uth reply);
}
}
br eak;

Nordic Semiconductor

Page 68 of 79

® Authorizing outside of the event handler:

/* gl obal variable storing the authorization data */
struct

{
uint16_t conn_handl e;
uintl1l6 t offset;
uint16 t dlen;
uint8_t dat a] MAX_DATA] ;
} auth_wite;

[..]

case BLE_GATTS_EVT_RW AUTHORI ZE_REQUEST:

i f(p_ble_evt->evt.gatts_evt. parans. aut hori ze_request.type == BLE_GATTS_AUTHORI ZE_TYPE_WRI TE)
{

/* store the metadata */
auth_write.conn_handle = p_ble_evt->evt.gatts_evt. conn_handl e;
auth_wite.offset = p_ble evt->evt.gatts_evt. parans. aut hori ze_request.request.wite.offset;

auth_wite.dlen = p_ble evt->evt.gatts_evt.paranms. authori ze_request.request.wite.len;
/* store the actual incom ng data */

mencpy(&uth _wite.data, &p bl e evt->evt.gatts_evt. parans. authori ze_request.request.wite. data,
auth_wite.dlen);

}

br eak;
[--]

/* authorization conplete */
ble gatts rw authorize reply parans_t auth_reply;

Nordic Semiconductor Page 69 of 79

auth_reply.type = BLE_GATTS_AUTHORI ZE_TYPE_WRI TE;

auth_reply. params.wite.gatt_status = BLE GATT_STATUS_ SUCCESS;
auth_reply. paranms. wite. update = 1;

/* obtain the data */

auth_reply.parans.wite.offset = auth_wite.offset;
auth_reply.params.wite.len = auth_wite.dl en;
auth_reply.params.wite.p_data = auth_wite. data

sd ble gatts rw authorize reply(auth wite.conn_handl e, &uth reply);

New functionality

Configurable bandwidth

The connections can now be configured to have low, medium or high bandwidth. This can be specified for both TX and RX independently to allow for asymmetric bandwidth. This is an optional feature and if the
application chooses not to use it the SoftDevice will instead configure the connections with defaults. The default configuration for connections as a central is BLE_CONN_BW M D (both for TX and RX), and for
connections as a peripheral it is BLE_CONN_BW HI GH (both for TX and RX).

When using the configurable bandwidth option the application should have specified beforehand, at BLE stack initialization time, a set of connection bandwidth configurations that includes the ones that it intends
to use through this option. Once a bandwidth configuration for a particular role is chosen through the sd_bl e_opt _set () SV call, all connections of that role established from that time on will use the chosen
configuration until a new one is set.

Additional information about this topic can be found in the SoftDevice Specification at http://infocenter.nordicsemi.com/.

The following table shows an approximate comparison of connections and bandwidth configuration for previous SoftDevices as well as the the s13x v2.0.1 configured as shown in the example below.

connections as a peripheral connections as a central

number RX/TX bandwith number RX /TX bandwith

s110 v8.0 1 HIGH / HIGH 0

s120 v2.1 (peripheral mode) 1 HIGH / HIGH 0

s120 v2.1 (central mode) 0 - 8 LOW /LOW
s130v1.0 1 MID / MID 3 LOW / LOW
s13x v2.0.1 (default) 0 HIGH / HIGH 0 MID / MID

Nordic Semiconductor Page 70 of 79

http://infocenter.nordicsemi.com/

s13x v2.0.1 (example configuration below) 1 MID / MID 1 HIGH / MID

/* Exanpl e for one nedi um bandwi dth RX and TX connection as a peripheral and high-bandw dth RX, nedi um bandw dth
TX connection as a central. */
bl e _conn_bw counts_t conn_bw counts = {
.tx_counts = {.high _count 0, .nmd_count 2, .low count
.rx_counts = {.high _count 1, .md_count = 1, .l|ow count

H

0},
0}

bl e_enabl e_parans_t enabl e_parans = {0};

enabl e_par ans. cormon_enabl e_par ans. p_conn_bw counts = &onn_bw counts;
enabl e_par ans. gap_enabl e_parans. central _conn_count = 1;

enabl e_par ans. gap_enabl e_par ans. peri ph_conn_count = 1;

sd_bl e_enabl e(&nabl e_parans, ...);

ble _opt_t ble_opt;

/* Configure bandwi dth and connect as a peripheral */

bl e_comon_opt _conn_bw t conn_bw = { .role = BLE_GAP_ROLE PERI PH, .conn_bw = { .conn_bw rx = BLE _CONN_BW M D,
conn_bw tx = BLE CONN.BWMD } };

bl e_opt. conmon_opt. conn_bw = conn_bw;

sd_bl e _opt _set (BLE_COVMON_OPT_CONN BW &bl e opt);

sd ble gap_adv_start(...);

/* Connection established with the configured bandw dth */
/* Configure bandwi dth and connect as a central */
bl e_comon_opt _conn_bw t conn_bw = { .role = BLE_GAP_ROLE _CENTRAL, .conn_bw = { .conn_bw rx = BLE_CONN_BW HI GH,

conn_bw tx = BLE CONN. BWMD } };
bl e_opt. conmon_opt. conn_bw = conn_bw;

Nordic Semiconductor Page 71 of 79

sd_bl e _opt _set (BLE_COVWON OPT_CONN BW &bl e opt);
sd_bl e_gap_connect(...);

/* Connection established with the configured bandw dth */

Block encryption

The blocking block encryption SV call sd_ecb_bl ock_encrypt () depends on the hardware encryption block and therefore will require to wait for it to complete before it returns to the application. If the user
now sets the SEVONPEND bit in the SCR to 1 before calling this function, the SoftDevice will sleep while the ECB is running instead of entering a busy loop.

A second SV call has also been introduced to perform multiple block encrypt operations in a single SV call to avoid the context switch overhead when more than one block of data needs to be encrypted.

uint32_t sd_ecb_bl ocks_encrypt (uint8_t block_count, nrf_ecb_hal _data_block_t * p_data_bl ocks);

sd_ecb_blocks_encrypt() example usage

/* global variable storing the authorization data */
nrf_ecb_hal _data_bl ock_t bl ocks[ECB_BLOCK COUNT] ;

/* intialize data bl ocks */

for(i = 0; i < ECB_BLOCK_COUNT; i++)

{
bl ocks[i].p_key = &app_keys[i];
bl ocks[i].p_cleartext = &app_cleartext[i];
bl ocks[i]. p_ci phertext = &app_dest[i];

sd_echb_bl ocks_encrypt (ECB_BLOCK _COUNT, bl ocks);

Nordic Semiconductor Page 72 of 79

PA/LNA support

A new BLE option, BLE_COVMMON_OPT_PA_LNA, and its corresponding option structure, bl e_conmon_opt _pa_| na_t, have been added to provide support for power amplifiers and low noise amplifiers. The
application is responsible for correctly initializing the option parameter structure with the required fields that map to the hardware design:

® PA and LNA pins and active level

® Set and Clear PPI channel IDs
® GPIOTE channel ID

PA/LNA option usage

/* PA/LNA configuration */
ble opt t pa_|Ina opt = {

.comon_opt = {
.pa_lna ={
.pa_cfg = {
. enabl e =1,
.active_high =1,
.gpio_pin = APP_PA PIN /* GPIO connected to the PA control pin */
H
.I'na_cfg = {
. enabl e =1,
.active _high =1,
.gpio_pin = APP_LNA PIN /* GPI O connected to the LNA control pin */
}

.ppi _ch_id_set = APP_AWP PPl _CH ID SET, /* PPl channel the app gives the SD to set the pins */
.ppi _ch_id clr = APP_ AW PPI CHID CLR, /* PPl channel the app gives the SD to clear the pins */
.gpiote ch_id = APP_AWP_GPIOTE CH ID [/* GPIOTE channel the app gives the SD to control the pins */
}
}
b

sd_bl e _opt _set (BLE _COVWON OPT_PA LNA, &pa_ | na_opt);

Nordic Semiconductor Page 73 of 79

LE Secure Connections

Version 4.2 of the Bluetooth Specification introduced a new mode of operation for the Security Manager Protocol, which enables the use of Public Key Cryptography for the generation of security keys. This
means that applications can now select the mode of operation of the Security Manager when performing a pairing or bonding procedure:

® Legacy pairing: Set the | esc bitin bl e_gap_sec_parans_t to 0.
® LE Secure Connections: Set the | esc bitin bl e_gap_sec_parans_t to 1.

Please note that, in order for LE Secure Connections to be used, the peer will need to support it. If not, legacy pairing will be used by default.

The SoftDevice implements the Security Manager Protocol and cryptographic toolbox functionality required to enable LE Secure Connections, but it does not include the Elliptic Curve Cryptography (ECC)
methods required to generate public keys and shared secrets. This means that applications must include their own implementation of ECC. The SoftDevice never requires knowledge of the application's private
key, since it delegates the calculation of the shared secret (DHKey) to the application itself:

®* bl e_gap_sec_keys_t:: p_pk (ownonly) is provided by the application and represents the P-256 public key (PK_ .) that matches the local private key (SK .). The key is provided as a part of the bl

e_gap_sec_keyset _t structure when calling sd_bl e_gap_sec_parans_repl y().

® BLE_GAP_EVT_LESC_DHKEY_REQUEST is a new event requesting the application to calculate the shared secret, which is the result of P256(SKq,n Perer)' The event structure contains the peer's
public key (Perer
_ble_gap_l esc_dhkey_reply() SVcall.

own own

) so that the application can start the calculation of the DHKey. Once the application has completed the calculation it must communicate the result to the SoftDevice by using the new sd

Additional API changes introduced by LE Secure Connections:
® bl e_gap_evt_passkey_di spl ay_t now contains an additional field, mat ch_r equest , used for the new Numeric Comparison pairing algorithm
® sd_bl e_gap_aut h_key_repl y() now accepts BLE_GAP_AUTH_KEY_TYPE_PASSKEY coupled with a NULL p_key pointer to indicate a match in the new Numeric Comparison pairing algorithm

® sd_ble _gap_|l esc_oob_data_get() andsd_bl e_gap_| esc_oob_dat a_set () have been introduced to support the new LE Secure Connections OOB pairing method, which is substantially
different from the Legacy OOB version

Additional details can be found in the API documentation and the Message Sequence Charts (MSCs) included with the SoftDevice.

Passkey entry keypress notifications

During pairing procedures using the Passkey Entry pairing algorithm (both in Legacy and LE Secure Connections modes) it is now possible to provide feedback to the peer regarding the keypresses being input
by the user. The actual value of the keypresses is never sent over the air, but the notifications can be sent to provide visual feedback of the keys being pressed.

To enable the application to send keypress natifications to the peer, the following SV call has been introduced:
® sd_bl e_gap_keypress_notify(uintl6_t conn_handle, uint8_t kp_not)

Where kp_not maps to any of the values present in the BLE_GAP_KP_NOT_TYPES enumeration.

Nordic Semiconductor Page 74 of 79

Sending keypress notifications

/* Pairing procedure using the Passkey Entry algorithmin progress, |ocal device inputs passkey */

/* User starts entering the passkey */

sd_bl e _gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_ TYPE PASSKEY START);

/* User inputs digits */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY DIAT_IN);
sd_bl e _gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY DIAT_IN);
/* User deletes a digit */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY D d T_OUT);
/* User clears the input conmpletely */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY CLEAR);

/* User ends the input procedure */

sd_bl e _gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_ TYPE PASSKEY_ END);

Please note that sd_bl e_gap_keypress_noti fy() can return NRF_ERROR _BUSY if the application calls it too often and the previous keypress notification has not made it over the air to the peer yet. In that
case the application should queue the keypresses internally and retry at a later time.

A new event has also been added to allow the application to receive keypress notifications from the peer:

® BLE GAP_EVT_KEY_PRESSED and its corresponding bl e_gap_evt _key_pressed_t

Receiving keypress notifications

/* Pairing procedure using the Passkey Entry algorithmin progress, peer device inputs passkey */

/* handl e the event */
case BLE _GAP_EVT_KEY_PRESSED:
swi tch(p_bl e_evt->evt.gap_evt. parans. key_pressed. kp_not)

{
case BLE_GAP_KP_NOT_TYPE_PASSKEY_START:

Nordic Semiconductor Page 75 of 79

/* Renote user has started entering the passkey */
br eak;
case BLE GAP_KP_NOT_TYPE PASSKEY DIG T _IN:
/* Renote user has input a digits */
br eak;
case BLE_GAP_KP_NOT_TYPE_PASSKEY DI G T_QOUT:
/* Renote user has deleted a digit */
br eak;
case BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR:
/* Renote user has cleared the input conpletely */
br eak;
case BLE _GAP_KP_NOT_TYPE PASSKEY_ END:
/* Renote user has ended the input procedure */
br eak;

..

Security Mode 1 Level 4

A new security level has been introduced along with support for LE Secure Connections. Security levels are used in GAP and GATT Server to define the connection's security level and the access requirements
for the peer to read and write attributes in the local Attribute Table. The list of supported security levels is now:

Security Mode 0, Level 0: No access allowed regardless of the connection's security level

Security Mode 1, Level 1: No encryption. The peer can read and write the attribute without restrictions

Security Mode 1, Level 2: Encryption without MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE Secure Connections) with or without MITM protection
Security Mode 1, Level 3: Encryption with MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE Secure Connections) with MITM protection

Security Mode 1, Level 4: LESC Encryption with MITM protection. Access to the attribute requires an encrypted connection (LE Secure Connections only) with MITM protection

To honour the new security level (Security Mode 1, Level 4) encryption must be enabled with an LTK that has been generated during a pairing or bonding procedure using LE Secure Connections with MITM
protection (Numeric Comparison, Passkey Entry or OOB). This is the highest security level available when defining the access requirements (permissions) of attributes in the local Attribute Table.

A new macro has been made available to set bl e_gap_conn_sec_node_t to the new security level:

BLE_GAP_CONN_SEC_MODE_SET_LESC ENC W TH M TM

An additional Advertising Data type has been added to bl e_gap. h

Nordic Semiconductor Page 76 of 79

BLE_GAP_AD TYPE URI

GATT Client attribute info discovery
A new SV call allows applications to obtain basic attribute information from the peer's Attribute Table:
uint32_t sd_ble gattc_attr_info_discover(uintl6_t conn_handle, ble_gattc_handl e range_t const * p_handl e_range);
the matching event identifier and structure are also part of this new feature:
e BLE_GATTC _EVT_ATTR_| NFO DI SC_RSP
® ble_gattc_attr_info_t

® ble_gattc_evt_attr_info_disc_rsp_t

This is the only GATT Client function that allows the application to retrieve full 128-bit UUIDs that do not need to be part of the list populated with sd_bl e_vs_uui d_add() . An example of 128-bit UUID retrieval
is shown below.

128-bit UUID retrieval using sd_ble_gatt_attr_info_discover()

bl e_gattc_handl e_range_t handl e_range;

/* list all attributes on the peer's Attribute Table */
handl e_range. start _handl e = 0x0001;

handl e_range. end_handl e = OxFFFF;

sd ble gattc_attr_info_discover(conn_handl e, &handl e range);

/* handl e the event */
case BLE_GATTC EVT_ATTR_| NFO DI SC_RSP:
/* check if we have 128-bit UU Ds */
if(p_ble evt->evt.gattc_evt.parans.attr_info_disc_rsp.format == BLE GATTC ATTR | NFO_FORVAT _128BI T)
{
uintl6 t attr_handl e;
bl e_uui d128 t uui d128;

Nordic Semiconductor Page 77 of 79

/[* Cbtain the attribute handle and the full 128-bit UU D */
attr_handle= p_ble_evt->evt.gattc_evt.parans.attr_info_disc_rsp.attr_info[0].handl e;

mencpy(&uui d128, &p bl e _evt->evt.gattc_evt.parans.attr_info_disc_rsp.attr_info[O].info.uuidl28.

uui d128, si zeof (uui d128));
}

br eak;

GATT Server first user attribute handle retrieval
When using the Service Changed characteristic to indicate to the peer that the local Attribute Table structure has changed, it is often useful to find out at which handle the application-controlled region of the

Attribute Table begins. For that specific purpose a new SV call has been introduced:
uint32_t sd_ble gatts_initial_user_handle_get(uintl6_t *p_handle);

This allows the application to communicate to the peer the exact range of the attributes that require rediscovery.

..

Obtaining the first user handle to indicate a Service Changed

uintlé_ t first_attr_handl e;

sd _ble gatts_initial _user_handle _get(&irst_attr_handle);
sd bl e gatts_service_changed(conn_handle, first _attr_handle, |ast_affected handle);

..

GATT Server local attribute metadata retrieval
The GATT Server module has always allowed applications to retrieve the value of any attribute present in the local Attribute Table by means of the sd_bl e_gatt s_val ue_get () SV call. Now in addition
applications can also retrieve the UUID and metadata of any local attribute using the new function:

uint32_t sd_ble_gatts_attr_get(uintl6_t handle, ble_uuid_t * p_uuid, ble_gatts_ attr_nd_t * p_nd);

This can be useful in several scenarios, one of which is calculating or verifying the structure of the local Attribute Table regardless of the current attribute values, focusing instead only in the layout itself

Page 78 of 79

Nordic Semiconductor

Obtaining the UUID and metadata of all local attributes

uint16_t attr_handl e;
ble uuid t uuid;
ble gatts attr_nd_t attr_nd;

/* start at the first valid user attribute handle */
sd ble gatts_initial _user_handle get(&ttr_handl e);

/* traverse the Attribute Table obtaining the UU D and netadata for each attribute */
whil e(sd_ble_gatts_attr_get(attr_handl e, &uuid, &attr_nd) == NRF_SUCCESS)
{

/* use the uuid and attr_nd here */

attr_handl e++;

..

GATT Server user memory layout for system attributes

The data format used by the GATT Server to store system attribute data is now fully documented in the APl documentation for applications that need to parse it. The data format is used by the following 2
functions:

® sd_ble_gatts_sys_attr_set()
® sd_ble gatts_sys attr_get()

The format documentation applies to the data pointed to by the p_sys_at t r _dat a pointer in both of the functions above.

Nordic Semiconductor Page 79 of 79

	s13x_nrf5x_7.2.0 migration document

