
Nordic Semiconductor Page 1 of 79

s13x_nrf5x_7.2.0 migration document

Introduction to the s13x_nrf5x migration document

About the document

This document describes how to migrate to new versions of the s130_nrf51 and s132_nrf52 SoftDevices. The s130_nrf51 and s132_nrf52 release notes should be read in conjunction with this document.

For each version, we have the following sections:

"Required changes" describes the changes that need to be done in the application when migrating from an older version of the SoftDevice.
"New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Not all new functionality may be covered; the release notes will contain a full list of Note:
new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the previous version, follow the instructions in that section. To migrate between
versions that are more than one version apart, follow the migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to version 5.1.0 from version 5.0.0, then follow the instructions to migrate to version 5.2.0 from version 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

Nordic Semiconductor Page 2 of 79

s132_nrf52_7.2.0
This section describes how to use the new features of s132_nrf52_7.2.0 when migrating from s132_nrf52_7.0.1. As with all minor releases, the s132_nrf52_7.2.0 is binary compatible with s132_nrf52_7.0.1.

New functionality

Efficient discovery of 128-bit UUIDs

By default, any discovered 128-bit UUIDs that are not present in the Vendor Specific UUID table, will have the set to .ble_uuid_t::type BLE_UUID_TYPE_UNKNOWN

To change this default behavior and enable the automatic insertion of discovered 128-bit UUIDs to the Vendor Specific UUID table, the following option can be used:

sd_ble_opt_set(BLE_GATTC_OPT_UUID_DISC, &(ble_opt_t){.gattc_opt.uuid_disc.auto_add_vs_enable = 1});

Nordic Semiconductor Page 3 of 79

s132_nrf52_7.0.1
This section describes how to use the new features of s132_nrf52_8.0.0 when migrating from s132_nrf52_7.0.1. Due to API changes between these versions, applications have to be to be recompiled.

Required changes

The application can no longer use the option . The advertiser will always use improved scheduling. This was previously defined as .BLE_COMMON_OPT_ADV_SCHED_CFG ADV_SCHED_CFG_IMPROVED

The macros , and NRF_SOC_APP_PPI_CHANNELS_SD_DISABLED_MSK, NRF_SOC_APP_PPI_CHANNELS_SD_ENABLED_MSK, NRF_SOC_APP_PPI_GROUPS_SD_DISABLED_MSK NRF_SOC_APP_PPI_GRO
are removed. The application can use the macros and to deduce the PPI channels UPS_SD_ENABLED_MSK NRF_SOC_SD_PPI_CHANNELS_SD_ENABLED_MSK NRF_SOC_SD_PPI_GROUPS_SD_ENABLED_MSK

and groups available to the application.

New functionality

Connection event trigger

When enabled, this feature will trigger a task at the start of connection events. The application can configure the SoftDevice to trigger a task every N connection events starting from a given connection event
counter.

API Updates

sd_ble_gap_next_conn_evt_counter_get(). This API can be used to retrieve the next connection event counter.
sd_ble_gap_conn_evt_trigger_start(), . These APIs can be used to start and stop triggering a task on connection events.sd_ble_gap_conn_evt_trigger_stop()

Usage

The code snippet below illustrates how to configure the SoftDevice to toggle the GPIO pin 13, every second connection event, starting at connection event 10. The code snippet stops the connection event trigger
when the connection parameters are updated.

void on_ble_evt(const ble_evt_t * p_ble_evt)
{
 if (p_ble_evt->header.evt_id == BLE_GAP_EVT_CONNECTED)
 {
 uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle;

Nordic Semiconductor Page 4 of 79

 ble_gap_conn_event_trigger_t trigger_params;
 trigger_params.ppi_ch_id = 0;
 trigger_params.task_endpoint = &NRF_GPIOTE->TASKS_OUT[0];
 trigger_params.conn_evt_counter_start = 10;
 trigger_params.period_in_events = 2;

 sd_ble_gap_conn_evt_trigger_start(conn_handle, &trigger_params);
 }
 else if (p_ble_evt->header.evt_id == BLE_GAP_EVT_CONN_PARAM_UPDATE)
 {
 uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
 sd_ble_gap_conn_evt_trigger_stop(conn_handle);
 }
}

int main(void)
{
 /* Configure GPIOTE */
 NRF_GPIO->DIRSET = (1 << 13);
 NRF_GPIOTE->CONFIG[0] = (GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos)
 | (13 << GPIOTE_CONFIG_PSEL_Pos)
 | (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos);

 /* Enable the BLE Stack and connect device */
 sd_ble_enable(...);
 sd_ble_gap_connect(...);

 [...]
}

Nordic Semiconductor Page 5 of 79

Configurable inclusion of Central Address Resolution (CAR) characteristic and Peripheral Preferred Connection Parameters
(PPCP)

API Updates

.BLE_GAP_CFG_CAR_INCL_CONFIG This allows the application to include or exclude the CAR characteristic from the GAP Service.
BLE_GAP_CFG_PPCP_INCL_CONFIG. This allows the application to include or exclude the PPCP characteristic from the GAP Service.

For the above inclusion configuration APIs, the application can use:

BLE_GAP_CHAR_INCL_CONFIG_INCLUDE: The characteristic is included.
BLE_GAP_CHAR_INCL_CONFIG_EXCLUDE_WITH_SPACE: The characteristic is excluded, but the SoftDevice will reserve the attribute handles which are otherwise used for this characteristic.
BLE_GAP_CHAR_INCL_CONFIG_EXCLUDE_WITHOUT_SPACE: The characteristic is excluded.

When CAR is excluded and the SoftDevice is configured to support the central role:

It is not possible to distribute own IRK.
It is not possible to enable privacy.

Usage

The code snippet below illustrates how to configure the SoftDevice to exclude both CAR and PPCP from the GAP Service.

Nordic Semiconductor Page 6 of 79

int main(void)
{
 ble_cfg_t cfg;

 /* Exclude CAR from GAP service, but reserve the ATT Handles that will otherwise be used up by CAR. */
 cfg.gap_cfg.car_include_cfg = BLE_GAP_CHAR_INCL_CONFIG_EXCLUDE_WITH_SPACE;
 sd_ble_cfg_set(BLE_GAP_CFG_CAR_INCL_CONFIG, &cfg, ..);

 /* Exclude PPCP from GAP service, but reserve the ATT Handles that will otherwise be used up by PPCP. */
 cfg.gap_cfg.ppcp_include_cfg= BLE_GAP_CHAR_INCL_CONFIG_EXCLUDE_WITH_SPACE;
 sd_ble_cfg_set(BLE_GAP_CFG_PPCP_INCL_CONFIG, &cfg, ..);

 /* Enable the BLE Stack. */
 sd_ble_enable(...);

 [...]
}

Nordic Semiconductor Page 7 of 79

s132_nrf52_6.1.0
This section describes how to use the new features of s132_nrf52_6.1.0 when migrating from s132_nrf52_6.0.0. As with all minor releases, the s132_nrf52_6.1.0 is binary compatible with s132_nrf52_6.0.0.
Hence existing applications running on s132_nrf52_6.0.0 need not be recompiled unless the new features are needed. Advertising extensions are now fully tested and qualified features.

New functionality

Support for advertising with up to 255 bytes of advertising data

The SoftDevice now supports advertising up to 255 bytes of advertising data. The macro is added to indicate this. For connectable extended BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED
advertising, the maximum advertising data size is 238 bytes, as indicated by .BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_CONNECTABLE_MAX_SUPPORTED

Usage

Extended Non-Connectable Non-Scannable Advertising with 255 bytes of Advertising data

static uint8_t raw_adv_data_data_buffer[BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED];
static ble_gap_adv_data_t adv_data =
 {
 .adv_data.p_data = raw_adv_data_data_buffer,
 .adv_data.len = sizeof(raw_adv_data_data_buffer)
 };

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params =
 {

Nordic Semiconductor Page 8 of 79

 .properties=
 {
 .type=BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED
 },
 .interval = BLE_GAP_ADV_INTERVAL_MAX,
 .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0},
 .max_adv_evts = 0,
 .filter_policy = BLE_GAP_ADV_FP_ANY,
 .primary_phy = BLE_GAP_PHY_1MBPS,
 .secondary_phy = BLE_GAP_PHY_2MBPS,
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data, &adv_params);

 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
}

Extended Scannable Advertising with 255 bytes of Scan Response data

static uint8_t raw_scan_rsp_data_buffer[BLE_GAP_ADV_SET_DATA_SIZE_EXTENDED_MAX_SUPPORTED];
static ble_gap_adv_data_t adv_data =
 {

Nordic Semiconductor Page 9 of 79

 .scan_rsp_data.p_data = raw_scan_rsp_data_buffer,
 .scan_rsp_data.len = sizeof(raw_scan_rsp_data_buffer)
 };

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params =
 {
 .properties=
 {
 .type=BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_UNDIRECTED
 },
 .interval = BLE_GAP_ADV_INTERVAL_MAX,
 .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0},
 .max_adv_evts = 0,
 .filter_policy = BLE_GAP_ADV_FP_ANY,
 .primary_phy = BLE_GAP_PHY_1MBPS,
 .secondary_phy = BLE_GAP_PHY_2MBPS,
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data, &adv_params);

 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]

Nordic Semiconductor Page 10 of 79

}

Support for receiving up to 255 bytes of advertising data

The SoftDevice now supports receiving up to 255 bytes of advertising data as a scanner. The macro is added to indicate this. BLE_GAP_SCAN_BUFFER_EXTENDED_MAX_SUPPORTED

Usage

Nordic Semiconductor Page 11 of 79

static uint8_t raw_scan_buffer[BLE_GAP_SCAN_BUFFER_EXTENDED_MAX_SUPPORTED];
static ble_data_t scan_buffer =
 {
 .p_data = raw_scan_buffer,
 .len = sizeof(raw_scan_buffer)
 };
static uint16_t scan_window = 0x00A0; /* Corresponds to 100 ms */

int main(void)
{
 ble_gap_scan_params_t scan_params=
 {
 .extended = 1, /* Enable extended scanning to be able to receive large advertising data. */
 .scan_phys = BLE_GAP_PHY_1MBPS,
 .timeout = BLE_GAP_SCAN_TIMEOUT_UNLIMITED,
 .window = scan_window,
 .interval = BLE_GAP_SCAN_INTERVAL_MAX,
 .channel_mask = {0}, /* Scanning on all the primary channels */
 .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL
 };

 /* Enable the BLE Stack */
 sd_ble_enable(...);

 /* Start scanning */
 sd_ble_gap_scan_start(&scan_params, &scan_buffer);

 [...]
}

Nordic Semiconductor Page 12 of 79

API for removing a Vendor Specific base UUID

Using , the application can now remove a Vendor Specific base UUID that has been added with . This allows the application to reuse memory allocated sd_ble_uuid_vs_remove() sd_ble_uuid_vs_add()
for Vendor Specific base UUIDs. The application must provide a pointer to the UUID type to be removed as an input parameter to . The UUID type must not be in use by the ATT sd_ble_uuid_vs_remove()
Server. A limitation with the current implementation is that the input parameter can only point to or the last added UUID type.BLE_UUID_TYPE_UNKNOWN

API to enable or disable extended RC calibration

Extended RC calibration is a new SoftDevice feature that performs additional RC oscillator drift detection and calibration when the SoftDevice is acting as a peripheral and the RC oscillator is used as the
SoftDevice clock source. The extended RC calibration is performed in addition to the periodic calibration which is configured when calling . sd_softdevice_enable() If using only peripheral connections, the
periodic calibration can then be configured with a much longer interval because the peripheral can detect and adjust automatically to clock drift and calibrate when required.

The extended RC calibration is enabled by default. The option BLE_COMMON_OPT_EXTENDED_RC_CAL is added to the BLE option API, allowing the application to enable or disable this feature. When using this
API, set ble_common_opt_t::extended_rc_cal::enable to '1' to enable, or to '0' to disable.

API to get the advertiser Bluetooth device address

A new API enables the application to get the local Bluetooth device address that is used by the advertiser. The application must provide the advertising handle of the advertiser sd_ble_gap_adv_addr_get()
for the input parameter, and a pointer to an address structure to be used as the output parameter. The function may only be called when advertising is enabled. adv_handle p_addr

Note: If privacy is enabled, the SoftDevice will generate a new private address every , which is configured when calling ble_gap_privacy_params_t::private_addr_cycle_s sd_ble_gap_privacy_se
. Depending on when is called, the returned address may not be the address that is currently used by the advertiser.t() sd_ble_gap_adv_addr_get()

Hardware resource usage API

The API now contains new macros to inform the application about the hardware resources used by the SoftDevice.

The macro indicates the interrupt priority levels used by the SoftDevice. __NRF_NVIC_SD_IRQ_PRIOS
The macro indicates the interrupt priority levels available to the application. __NRF_NVIC_APP_IRQ_PRIOS
The macros can be used to identify the PPI channels reserved by the SoftDevice when the NRF_SOC_SD_PPI_CHANNELS_SD_ENABLED_MSK and NRF_SOC_SD_PPI_CHANNELS_SD_DISABLED_MSK
SoftDevice is enabled or disabled respectively.
The macros can be used to identify the PPI channels available to the application when NRF_SOC_APP_PPI_CHANNELS_SD_ENABLED_MSK and NRF_SOC_APP_PPI_CHANNELS_SD_DISABLED_MSK
the SoftDevice is enabled or disabled respectively.
The macros and can be used to identify the PPI groups reserved by the SoftDevice when the NRF_SOC_SD_PPI_GROUPS_SD_ENABLED_MSK NRF_SOC_SD_PPI_GROUPS_SD_DISABLED_MSK
SoftDevice is enabled or disabled respectively.
The macros can be used to identify the PPI groups available to the application when the NRF_SOC_APP_PPI_GROUPS_SD_ENABLED_MSK and NRF_SOC_APP_PPI_GROUPS_SD_DISABLED_MSK
SoftDevice is enabled or disabled respectively.

Nordic Semiconductor Page 13 of 79

Other additions to the API

The macro indicates the SoftDevice variant. SD_VARIANT_ID
The macro indicates the amount of flash memory used by the SoftDevice. SD_FLASH_SIZE

s132_nrf52_6.0.0
This section describes how to migrate to s132_nrf52_6.0.0 from s132_nrf52_5.1.0.

Notes:

s132_nrf52_6.0.0 has changed the API compared to s132_nrf52_5.1.0 which requires applications to be recompiled.
s132_nrf52_6.0.0 includes some features that are not Bluetooth qualified. For more information, see the release notes.

New functionality

Quality of Service (QoS) channel survey

This feature provides measurements of the energy levels on the Bluetooth Low Energy channels to the application. The application can use this information to determine the noise floor on a per channel basis
and set an adapted channel map to avoid busy channels.

When the feature is enabled, events will periodically report the measured energy levels for each channel. The channel energy is reported in BLE_GAP_EVT_QOS_CHANNEL_SURVEY_REPORT ble_gap_evt_qos
, indexed by the Channel Index. The SoftDevice will attempt to measure energy levels and deliver reports with the average _channel_survey_report_t::channel_energy[BLE_GAP_CHANNEL_COUNT]

interval specified in .interval_us

Note: To make the channel survey feature available to the application, must be set. This is done using the Able_gap_cfg_role_count_t::qos_channel_survey_role_available sd_ble_cfg_set()
PI.

The event structures for and have been changed to provide the application the channel number for reported Received Signal Strength Indication BLE_GAP_EVT_RSSI_CHANGED BLE_GAP_EVT_ADV_REPORT
(RSSI) measurements. For more information, see the Required changes section.Updated RSSI API in

API Updates

 A new Boolean flag, ,ble_gap_cfg_role_count_t::qos_channel_survey_role_available must be set in the SoftDevice role configuration API to make the channel survey available for the
application.

Nordic Semiconductor Page 14 of 79

Two new SV calls have been added to start and stop the channel survey:
sd_ble_gap_qos_channel_survey_start()
sd_ble_gap_qos_channel_survey_stop()

Usage

/* Make Channel Survey feature available to the application */
ble_cfg_t cfg;
cfg.role_count.qos_channel_survey_role_available = 1;
sd_ble_cfg_set(..., &cfg, ...);

/* Start receiving channel survey continuously. */
uint32_t errcode;
errcode = sd_ble_gap_qos_channel_survey_start(BLE_GAP_QOS_CHANNEL_SURVEY_INTERVAL_CONTINUOUS);

int8_t rssi;
/* A new measurement is ready. */
case BLE_GAP_EVT_QOS_CHANNEL_SURVEY_REPORT:
{
 for (i = 0; i < BLE_GAP_CHANNEL_COUNT; i++)
 {
 rssi = p_ble_evt->evt.gap_evt.params.qos_channel_survey_report.channel_energy[i];
 }
}

Nordic Semiconductor Page 15 of 79

/* Stop receiving channel survey. */
errcode = sd_ble_gap_qos_channel_survey_stop()

Advertising Extensions

The LE Advertising Extensions feature has limited support in this SoftDevice that can be enabled with the new advertiser and scanner API. The feature may not function as specified, and may contain issues. For
more information, see the release notes.

Extended Advertiser

Extended advertising can be enabled by assigning an advertising type to the ._EXTENDED_ ble_gap_adv_params_t::properties::type

The extended advertising types are:

BLE_GAP_ADV_TYPE_EXTENDED_CONNECTABLE_NONSCANNABLE_UNDIRECTED
BLE_GAP_ADV_TYPE_EXTENDED_CONNECTABLE_NONSCANNABLE_DIRECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_UNDIRECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_SCANNABLE_DIRECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED
BLE_GAP_ADV_TYPE_EXTENDED_NONCONNECTABLE_NONSCANNABLE_DIRECTED

New parameters in the API that are relevant for extended advertising:

ble_gap_adv_params_t::properties::anonymous
If this flag is set to 1, the advertiser's address will be omitted from all PDUs. This is only available for extended advertising event types.

ble_gap_adv_params_t::primary_phy
Indicates the PHY on which the primary advertising channel packets are transmitted.
For extended advertising event types, this can be set to , , or if supported by the SoftDevice.BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBIT BLE_GAP_PHY_CODED

ble_gap_adv_params_t::secondary_phy
Indicates the PHY on which the auxiliary PDUs will be sent.
Can be set to , , , or if supported by the SoftDevice.BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBPS BLE_GAP_PHY_2MBPS BLE_GAP_PHY_CODED

ble_gap_adv_params_t::set_id
This value is used as the Advertising Set ID in the AdvDataInfo field of the PDU.

Extended Scanner

Nordic Semiconductor Page 16 of 79

Scanning of extended advertising PDUs can be enabled by setting the flag to 1 for the scan parameters provided to . If set to 1, both ble_gap_scan_params_t::extended sd_ble_gap_scan_start()
legacy and extended advertising PDUs will be scanned. If the flag is set to 0, all extended advertising PDUs will be ignored by the scanner. Correspondingly, to connect to a peer that is advertising with extended
advertising PDUs, set the flag to 1 for the scan parameters provided to .ble_gap_scan_params_t::extended sd_ble_gap_connect()

New parameters in the API that are relevant for extended scanning:

ble_gap_scan_params_t::report_incomplete_evts
This option is currently not supported.

ble_gap_evt_adv_report_t::type::extended_pdu
Will be set to 1 if an extended advertising set is received.

ble_gap_evt_adv_report_t::tx_power
The transmit power reported by the advertising in the last packet header received. The TX power field is present only in some extended advertising PDUs.

ble_gap_evt_adv_report_t::aux_pointer
The offset and PHY of the next advertising packet in this extended advertising set.
This field will only be set if is set to .ble_gap_evt_adv_report_t::type::status BLE_GAP_ADV_DATA_STATUS_INCOMPLETE_MORE_DATA

ble_gap_evt_adv_report_t::set_id
Set ID of the received advertising data. This is only present in some extended advertising PDUs.

ble_gap_evt_adv_report_t::data_id
Data ID of the received advertising data. This is only present in some extended advertising PDUs.

Write to SoftDevice protected registers

 A new API, sd_protected_register_write(), has been added to give the application the possibility to write to a register that is write-protected by the SoftDevice. A write-protected peripheral shall only be
accessed through the SoftDevice API when the SoftDevice is enabled.

The new API supports writing to the Block Protection () peripheral.BPROT The application can use sd_protected_register_write() instead of sd_flash_protect() to set the flash protection
configuration registers.

Usage

/* Old API: */
errcode = sd_flash_protect(value0, value1, value2, value3)

/* New API: */
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG0), value0)

Nordic Semiconductor Page 17 of 79

errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG1), value1)
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG2), value2)
errcode = sd_protected_register_write(&(NRF_BPROT->CONFIG3), value3)

Required changes

Updated advertiser API

 sd_ble_gap_adv_data_set() has been removed.

A new API, , has been added with the following functionalities:sd_ble_gap_adv_set_configure()

Configuring and updating the advertising parameters of an advertising set.
Setting, clearing, or updating advertising and scan response data.

Note: The a dvertising data must be kept alive in memory until advertising is terminated. Not doing so will lead to undefined behavior. Note: Updating advertising data while advertising can only be done
by providing new advertising data buffers.

Configuring and updating an advertising set

 is a term introduced in Bluetooth Core Specification v5.0.Advertising Set

Each advertising set is identified by an advertising handle. To configure a new advertising set and obtain a new advertising handle, should be called with a pointer sd_ble_gap_adv_set_configure() p_adv
 pointing to an advertising handle set_handle to BLE_GAP_ADV_SET_HANDLE_NOT_SET.

To update an existing advertising set, with a previously configured advertising handle.sd_ble_gap_adv_set_configure() should be called

Note: Currently only one advertising set can be configured in the SoftDevice.

Configuring advertising parameters for an advertising set

Setting advertising parameters has been moved from to .sd_ble_gap_adv_start() sd_ble_gap_adv_set_configure()

 has changed:The content of ble_gap_adv_params_t

ble_gap_adv_params_t::type has been removed.
A new parameter, of the new type properties, ble_gap_adv_properties_t has been added.

The advertising type must now be set through _ble_gap_adv_properties t::type.

Nordic Semiconductor Page 18 of 79

.The advertising type definitions () have changed, and new types have been addedBLE_GAP_ADV_TYPES The mapping from old to new advertising types is shown below. These advertising
types are referred to as advertising types:legacy

 type = BLE_GAP_ADV_TYPE_ADV_IND -> properties.type = BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED
 BLE_GAP_ADV_TYPE_ADV_DIRECT_INDtype = -> BLE_GAP_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DIRECTED_HIGH_DUTY_CYCLE properties.type = or BLE_GA

P_ADV_TYPE_CONNECTABLE_NONSCANNABLE_DIRECTED
 BLE_GAP_ADV_TYPE_ADV_SCAN_INDtype = -> properties.type = BLE_GAP_ADV_TYPE_NONCONNECTABLE_SCANNABLE_UNDIRECTED

 BLE_GAP_ADV_TYPE_ADV_NONCONN_INDtype = -> BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDIRECTEDproperties.type =
 fpble_gap_adv_params_t:: has been renamed .filter_policyble_gap_adv_params_t::

has been renamed . timeoutble_gap_adv_params_t:: ble_gap_adv_params_t::duration and is now measured in 10 ms units
.ble_gap_adv_params_t::channel_mask type has been changed from to the new type ble_gap_adv_ch_mask_t ble_gap_ch_mask_t

Note: At least one of the primary channels that is channel index 37-39 must be set to 0.
Note: Masking away secondary channels is currently not supported.
The mapping from old type ble_gap_adv_ch_mask_t to the new type ble_gap_ch_mask_t is shown below:

 channel_mask.ch_37_off = 1 -> = 0x2000000000channel_mask
 channel_mask.ch_38_off = 1 -> = 0x4000000000channel_mask
 channel_mask.ch_39_off = 1 -> = 0x8000000000channel_mask

 has several new parameters:ble_gap_adv_params_t
 has been added to allow the application to advertise for a given number of advertising events.max_adv_evts

 scan_req_notification flag has been added to give the application the possibility to receive events of type . This replaces ble_gap_evt_scan_req_report_t BLE_GAP_OPT_SCAN_REQ
_REPORT.

 and allow the application to select PHYs primary_phy secondary_phy for primary and secondary advertising channels.
 should be set to or for legacy advertising types. it should be set to primary_phy BLE_GAP_PHY_AUTO BLE_GAP_PHY_1MBPS For extended advertising types, BLE_GAP_PHY_1MBPS

or .BLE_GAP_PHY_CODED if supported by the SoftDevice
 can be ignored for legacy advertising. For extended advertising types, it should be set to or secondary_phy BLE_GAP_PHY_1MBPS, BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_CODED if

.supported by the SoftDevice
 has been added to allow the application to choose the set ID of an extended advertiserset_id .

Other Advertising API changes

BLE_GAP_TIMEOUT_SRC_ADVERTISING has been removed.
A new event, structure BLE_GAP_EVT_ADVERTISING_SET_TERMINATED with ble_gap_evt_adv_set_terminated_t, has been introduced to let the application know when and why an
advertising set has terminated.

A new configuration parameter, , ble_gap_cfg_role_count_t::adv_set_count has been introduced to set the maximum number of advertising sets. Note: The maximum number of advsupported
ertising sets is .BLE_GAP_ADV_SET_COUNT_MAX

 BLE_GAP_ADV_MAX_SIZE has been replaced with BLE_GAP_ADV_SET_DATA_SIZE_MAX.
 now includesble_gap_evt_connected_t and adv_handle adv_data of the new type ble_gap_adv_data_t These are set when the device connects as a peripheral. .

 now includes .ble_gap_evt_scan_req_report_t adv_handle
 has been removed.BLE_GAP_OPT_SCAN_REQ_REPORT

 has been changed from 180 to 18000 as is now measured in 10 ms units.BLE_GAP_ADV_TIMEOUT_LIMITED_MAX sd_ble_gap_adv_params_t::duration

Usage

Nordic Semiconductor Page 19 of 79

static uint8_t raw_adv_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer1[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data1 = {.adv_data.p_data = raw_adv_data_buffer1, .adv_data.len =
sizeof(raw_adv_data_buffer1),
 .scan_rsp_data.p_data = raw_scan_rsp_data_buffer1, .scan_rsp_data.len =
sizeof(raw_scan_rsp_data_buffer1)};

/* A second advertising data buffer for later updating advertising data while advertising */
static uint8_t raw_adv_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static uint8_t raw_scan_rsp_data_buffer2[BLE_GAP_ADV_SET_DATA_SIZE_MAX];
static ble_gap_adv_data_t adv_data2 = {.adv_data.p_data = raw_adv_data_buffer2, .adv_data.len =
sizeof(raw_adv_data_buffer2),
 .scan_rsp_data.p_data = raw_scan_rsp_data_buffer2, .scan_rsp_data.len =
sizeof(raw_scan_rsp_data_buffer2)};

int main(void)
{
 uint8_t adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET;
 ble_gap_adv_params_t adv_params = {.properties={.type=BLE_GAP_ADV_TYPE_CONNECTABLE_SCANNABLE_UNDIRECTED},
 .interval = BLE_GAP_ADV_INTERVAL_MAX,
 .duration = BLE_GAP_ADV_TIMEOUT_LIMITED_MAX,
 .channel_mask = {0}, /* Advertising on all the primary channels */
 .max_adv_evts = 0,
 .filter_policy = BLE_GAP_ADV_FP_ANY,
 .primary_phy = BLE_GAP_PHY_AUTO,
 .scan_req_notification = 1
 };
 /* Enable the BLE Stack */
 sd_ble_enable(...);

 [...]
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data1, &adv_params);

Nordic Semiconductor Page 20 of 79

 /* Start advertising */
 sd_ble_gap_adv_start(adv_handle, BLE_CONN_CFG_TAG_DEFAULT);

 [...]
 /* Update advertising data while advertising */
 sd_ble_gap_adv_set_configure(&adv_handle, &adv_data2, NULL);

 [...]
 /* Stop advertising */
 sd_ble_gap_adv_stop(adv_handle);

 [...]
}

Updated scanner API

The scanner API has been updated. The changes are as follows:

 has been changed:ble_gap_scan_params_t
A new flag, extended, has been added. If set to 1, the scanner will receive both legacy advertising packets and extended advertising packets. If set to 0, the extended advertising packets will
be ignored.
The Observer channel map for primary advertising channels can be set through a new parameter . The parameter type is ble_gap_scan_params_t::channel_mask ble_gap_ch_mask_t
the same as is used for setting advertiser channel map.

 and have been combined into . See for valid policies.use_whitelist adv_dir_report filter_policy BLE_GAP_SCAN_FILTER_POLICIES
 has been added to let the application decide on scan_phys which PHYs the scanner should receive packets. Set to orBLE_GAP_PHY_1MBPS if extended scanning is BLE_GAP_PHY_AUTO

.disabled
 is now measured in 10 ms units.timeout

 which takes a has a new input parameter, sd_ble_gap_scan_start() p_adv_report_buffer, pointer to an that advertising report buffer must be kept alive until the scanner is stopped. The
minimum buffer size is either BLE_GAP_SCAN_BUFFER_MIN or when extended scanning is enabled.BLE_GAP_SCAN_BUFFER_EXTENDED_MIN
When the application receives a , it must now resume scanning by calling .ble_gap_adv_report_t sd_ble_gap_scan_start()

 has been updated:ble_gap_evt_adv_report_t
. has been redefined from to ::typeble_gap_evt_adv_report_t uint8_t ble_gap_adv_report_type_t

 flag has been removed. It is now included in .scan_rsp ble_gap_adv_report_type_t::scan_response
 and have been replaced with of data dlen data type .ble_data_t

New fields have been added: and aux_pointer.
 now includes which is set when the scanner times out.ble_gap_evt_timeout_t adv_report_buffer

 and have been increased from 0x4000 to 0xFFFF. BLE_GAP_SCAN_INTERVAL_MAX BLE_GAP_SCAN_WINDOW_MAX

Nordic Semiconductor Page 21 of 79

 has been removed.BLE_GAP_SCAN_TIMEOUT_MAX

Usage

static uint8_t raw_scan_buffer[BLE_GAP_SCAN_BUFFER_MIN];
static ble_data_t scan_buffer = {.p_data = raw_scan_buffer, .len = sizeof(raw_scan_buffer)};

void on_ble_evt(const ble_evt_t * p_evt)
{
 if (p_ble_evt->header.evt_id == BLE_GAP_EVT_ADV_REPORT)
 {
 ble_gap_evt_adv_report_t * p_report = &p_ble_evt->evt.gap_evt.params.adv_report;

 /* Read out data*/
 [...]

 /* Continue scanning. */
 sd_ble_gap_scan_start(NULL, &scan_buffer);
 }
}

int main(void)
{
 ble_gap_scan_params_t scan_params= {.extended = 0,
 .scan_phys = BLE_GAP_PHY_AUTO,
 .timeout = BLE_GAP_SCAN_TIMEOUT_UNLIMITED, /* Unlimited scanning */
 .interval = BLE_GAP_SCAN_INTERVAL_MAX,
 .channel_mask = {0}, /* Scanning on all the primary channels */
 .filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL
 };
 /* Enable the BLE Stack */

Nordic Semiconductor Page 22 of 79

 sd_ble_enable(...);

 /* Start scanning */
 sd_ble_gap_scan_start(&scan_params, &scan_buffer);

 [...]
}

Updated RSSI API

The RSSI API has been changed so that the SoftDevice can provide the application with the channel index on which the reported RSSI measurements are made.

sd_ble_gap_rssi_get() takes an additional parameter . For this parameter, provide a pointer to a location where the channel index for the RSSI measurement should be stored.p_ch_index
The event structure for the event has a new parameter . This is the Data Channel Index (0-36) on which the RSSI is BLE_GAP_EVT_RSSI_CHANGED ble_gap_evt_rssi_changed_t::ch_index
measured.
The event structure for the event has a new parameter . This is the Channel Index (0-39) on which the last advertising packet BLE_GAP_EVT_ADV_REPORT ble_gap_evt_adv_report_t::ch_index
is received. The corresponding measured RSSI for this packet can be read from .ble_gap_evt_adv_report_t::rssi

TX power API

The TX power API now supports setting individual transmit power for each link or role.

sd_ble_gap_tx_power_set() takes two new parameters, and in addition to . For available roles and TX power values, see ble_gap.h.role ,handle tx_power

Updated Flash API

sd_flash_write() now triggers a HardFault if the application tries to write to a protected page. is returned if the application tries to write to a page outside application flash area.NRF_ERROR_FORBIDDEN

sd_flash_page_erase() now triggers a HardFault if the application tries to erase a protected page. is returned if the application tries to erase a page outside application flash area.NRF_ERROR_FORBIDDEN

Nordic Semiconductor Page 23 of 79

s132_nrf52_5.0.0
This section describes how to migrate to s132_nrf52_5.0.0 from s132_nrf52_4.0.3.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to . 0x23000

If the project uses a scatter file or linker script instead, they must be updated accordingly.

The RAM usage of the SoftDevice has also changed. should be used to find the APP_RAM_BASE for a particular configuration. sd_ble_enable()

API renaming and updates

Some APIs are renamed or removed. Applications that use the old API names must be updated:

The timeout source has been removed. Use the existing instea BLE_GAP_TIMEOUT_SRC_SECURITY_REQUEST BLE_GAP_EVT_AUTH_STATUS {auth_status: BLE_GAP_SEC_STATUS_TIMEOUT}
d.
BLE_GAP_ADV_NONCON_INTERVAL_MIN has been removed because the lower limit for the advertising interval for non-connectable advertisement has been lowered to .BLE_GAP_ADV_INTERVAL_MIN
The compatibility mode is removed because the SoftDevice now accepts overlapping peer-initiated Link Layer control procedures as a slave.BLE_GAP_OPT_COMPAT_MODE_2
NRF_ERROR_BUSY will no longer be returned by , , and .sd_ble_gap_adv_start() sd_ble_gap_scan_start() sd_ble_gap_authenticate() sd_ble_gap_connect()
NRF_ERROR_BUSY can now be returned when calling , or .sd_ble_user_mem_reply() sd_ble_gatts_rw_authorize_reply() sd_ble_gap_sec_params_reply()
NRF_CLOCK_LF_XTAL_ACCURACY renamed to NRF_CLOCK_LF_ACCURACY
nrf_clock_lf_cfg_t struct member renamed to .xtal_accuracy accuracy

 A new event BLE_GAP_EVT_PHY_UPDATE_REQUEST has been added. The application must check for this event and respond to it by calling the SV call sd_ble_gap_phy_update(). For more
information, please refer to the 2 Mbps PHY support section in New functionality.

RC Oscillator accuracy

Nordic Semiconductor Page 24 of 79

The RC oscillator accuracy can now be set to any of the defined values and there is no default value anymore. In other words, the parameter NRF_CLOCK_LF_ACCURACY accuracynrf_clock_lf_cfg_t::
now has the same functionality when used with the RCOSC clock source as with the XTAL clock source. The RC oscillator accuracy should be set to a value appropriate for the chip.

New functionality

2 Mbps PHY support

This SoftDevice supports 2 Mbps PHY data transmission for already established connections. Either the application or the peer can request switching to 2 Mbps PHY in order to achieve higher throughput. Both
sides need to agree on the PHYs before a PHY change can occur. The application has to respond to the PHY Update procedure when that is initiated by the peer, otherwise the link will be disconnected. This
makes it necessary for the application to pull a new event: . Another event, may be raised when a PHY Update procedure is completed BLE_GAP_EVT_PHY_UPDATE_REQUEST BLE_GAP_EVT_PHY_UPDATE,
but the application is not required to take any actions for this event.

API Updates

A new SV call, , has been added to request the controller to attempt to change to a new PHY, or to respond to a peer-initiated PHY Update procedure. sd_ble_gap_phy_update()

Usage

ble_gap_phys_t phys = {BLE_GAP_PHY_2MBPS, BLE_GAP_PHY_2MBPS};
sd_ble_gap_phy_update(conn_handle, &phys);

A new event, , has been added to notify the application that the peer has initiated a PHY Update procedure, to which the application must respond with its PHY BLE_GAP_EVT_PHY_UPDATE_REQUEST
preferences.
A new event, , has been added to notify the application that a self-initiated or peer-initiated PHY Update procedure has been completed.BLE_GAP_EVT_PHY_UPDATE

Usage

case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
{
 /* The PHYs requested by the peer can be read from the event parameters: p_ble_evt->evt.gap_evt.params.
phy_update_request.peer_preferred_phys.
 * Note that the peer's TX correponds to our RX and vice versa. */

Nordic Semiconductor Page 25 of 79

 /* Allow SoftDevice to choose PHY Update Procedure parameters automatically. */
 ble_gap_phys_t phys = {BLE_GAP_PHY_AUTO, BLE_GAP_PHY_AUTO};
 sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
 break;
}
case BLE_GAP_EVT_PHY_UPDATE:
{
 if (p_ble_evt->evt.gap_evt.params.phy_update.status == BLE_HCI_STATUS_CODE_SUCCESS)
 {
 /* PHY Update Procedure completed, see p_ble_evt->evt.gap_evt.params.phy_update.tx_phy and p_ble_evt->evt.
gap_evt.params.phy_update.rx_phy for the currently active PHYs of the link. */
 }
 break;
}

Connection-Oriented Channels in LE Credit Based Flow Control Mode

The SoftDevice now supports Connection-Oriented Channels in the LE Credit Based Flow Control Mode. To be able to use this feature, the application has to set an L2CAP connection configuration using
the configuration API as shown below.sd_ble_cfg_set()

Usage

Setting L2CAP Connection Configuration

/* Set L2CAP Connection Configuration for connection identified by coc_conn_cfg_tag */
ble_cfg_t cfg;

memset(&cfg, 0, sizeof(ble_cfg_t));

cfg.conn_cfg.conn_cfg_tag = coc_conn_cfg_tag;
cfg.conn_cfg.params.l2cap_conn_cfg.rx_mps = BLE_L2CAP_MPS_MIN;

Nordic Semiconductor Page 26 of 79

cfg.conn_cfg.params.l2cap_conn_cfg.tx_mps = BLE_L2CAP_MPS_MIN;
cfg.conn_cfg.params.l2cap_conn_cfg.rx_queue_size = 5;
cfg.conn_cfg.params.l2cap_conn_cfg.tx_queue_size = 5;
cfg.conn_cfg.params.l2cap_conn_cfg.ch_count = 1;

sd_ble_cfg_set(BLE_CONN_CFG_L2CAP, &cfg, ...);

[...]

/* Enable the BLE Stack */
sd_ble_enable(...);

The usage of some of the SV calls and events related to this feature is explained below. For the complete list of SV calls and events, please refer to the API documentation available in ble_l2cap.h.

 A new SV call, , has been added to request the setup of an L2CAP channel, or to respond to a setup request from a peer. sd_ble_l2cap_ch_setup()

Usage

Creating a new L2CAP Channel

uint16_t local_cid = BLE_L2CAP_CID_INVALID;
ble_l2cap_ch_setup_params_t ch_setup_params;

ch_setup_params.le_psm = 0x25;
ch_setup_params.rx_params.rx_mtu = BLE_L2CAP_MTU_MIN;
ch_setup_params.rx_params.rx_mps = BLE_L2CAP_MPS_MIN;
ch_setup_params.rx_params.sdu_buf = NULL;
sd_ble_l2cap_ch_setup(conn_handle, &local_cid, &ch_setup_params);

Nordic Semiconductor Page 27 of 79

Responding to a L2CAP Channel setup request

case BLE_L2CAP_EVT_CH_SETUP_REQUEST:
{
 /* An L2CAP channel setup request has been received from the peer. */

 uint16_t local_cid = p_ble_evt->evt.l2cap_evt.local_cid;
 ble_l2cap_ch_setup_params_t ch_setup_params;

 ch_setup_params.le_psm = 0x25;
 ch_setup_params.rx_params.rx_mtu = BLE_L2CAP_MTU_MIN;
 ch_setup_params.rx_params.rx_mps = BLE_L2CAP_MPS_MIN;
 ch_setup_params.rx_params.sdu_buf = NULL;

 sd_ble_l2cap_ch_setup(p_ble_evt->evt.l2cap_evt.conn_handle, &local_cid, &ch_setup_params);

 break;
}

The SV call can be used to transmit an SDU (Service Data Unit) on an L2CAP channel. The event is generated by the SoftDevice to notify the application sd_ble_l2cap_ch_tx() BLE_L2CAP_EVT_CH_TX
that the SDU has been transmitted.

Usage

Transmitting on an L2CAP Channel

ble_data_t sdu_to_send;
uint8_t data[] = "Sample";

sdu_to_send.len = strlen(data);
sdu_to_send.p_data = data;

Nordic Semiconductor Page 28 of 79

sd_ble_l2cap_ch_tx(conn_handle, local_cid, &sdu_to_send);

[...]
case BLE_L2CAP_EVT_CH_TX:
 /* The SDU is transmitted. */
 break;

[...]

The SV call be used to provide the SoftDevice with a buffer to receive an SDU from the peer. The event is generated by the SoftDevice to notify the sd_ble_l2cap_ch_rx () shall BLE_L2CAP_EVT_CH_RX
application that an SDU has been received. The application shall not change the buffer provided to the SoftDevice before receiving the event.

Usage

Receiving on an L2CAP Channel

[...]

ble_data_t sdu_buf;
uint8_t data[150];

sdu_buf.len = strlen(data);
sdu_buf.p_data = data;

sd_ble_l2cap_ch_rx(conn_handle, local_cid, &sdu_buf));

[...]
case BLE_L2CAP_EVT_CH_RX:
 /* An SDU is received by the SoftDevice from the peer and is available in p_ble_evt->evt.l2cap_evt.params.rx.

Nordic Semiconductor Page 29 of 79

sdu_buf */

 break;

[...]

Network Privacy Mode

The SoftDevice now supports the Network Privacy Mode. In Network Privacy Mode, a device will only accept advertising packets from peer devices that contain private addresses.

API Updates

A new mode, is added to enable Network Privacy Mode.BLE_GAP_PRIVACY_MODE_NETWORK_PRIVACY,
A new characteristic, (RPA = Resolvable Private Address), is defined to let the application add this characteristic to the attribute database.BLE_UUID_GAP_CHARACTERISTIC_RPA_ONLY

Usage

Set the privacy settings to network privacy with random private resolvable address:

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_NETWORK_PRIVACY;
privacy_params.private_addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_privacy_set(privacy_params);

Unique string to identify a SoftDevice

The SoftDevice Information Structure now also contains a string, namely the SoftDevice unique string, that can be used to uniquely identify a version of the SoftDevice (applies also for alpha releases).

Nordic Semiconductor Page 30 of 79

A new define SD_UNIQUE_STR_ADDR_GET has been added to retrieve the address of the SoftDevice unique string. The defines and SD_UNIQUE_STR_SIZE SD_UNIQUE
 define the size of the string and its offset relative to the SoftDevice base address respectively. _STR_OFFSET

Usage

Fetching the SoftDevice unique string

/* Declare a character array that is twice the length of the SoftDevice unique string.
 * This will be used to store the hexadecimal representation of the SoftDevice unique string. */
char str[SD_UNIQUE_STR_SIZE * 2];
/* Fetch the address of the SoftDevice unique string. */
const uint8_t * const p_unique_str = SD_UNIQUE_STR_ADDR_GET(MBR_SIZE);

/* Read the SoftDevice unique string into the character array, converting it into hexadecimal notation. */
for (uint8_t i = 0; i < SD_UNIQUE_STR_SIZE; i++)
{
 sprintf(&str[i * 2], "%02x", p_unique_str[i]);
}
/* The SoftDevice unique string is now available in the character array named str. */

Other API additions and changes

The status code BLE_HCI_STATUS_CODE_LMP_ERROR_TRANSACTION_COLLISION indicates that there has been an illegal collision of LL Control PDUs on air.
A new MBR command has been added to forward all interrupts to another base address.SD_MBR_COMMAND_IRQ_FORWARD_ADDRESS_SET
New defines for minimum and maximum values of authenticated payload timeout have been added. See .BLE_GAP_AUTH_PAYLOAD_TIMEOUT
A flag is added to the struct, indicating whether an authentication procedure resulted in an LE Secure Connection.lesc ble_gap_evt_auth_status_t
The SoftDevice will no longer return on unless the procedure is already in progress.NRF_ERROR_BUSY sd_ble_gap_conn_param_update()
The new definitions and define timing constraints the application must take into account when NRF_RADIO_MAX_EXTENSION_PROCESSING_TIME_US NRF_RADIO_MIN_EXTENSION_MARGIN_US
using with the Radio Timeslot API.NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND

Nordic Semiconductor Page 31 of 79

s132_nrf52_4.0.3
This section describes how to migrate to s132_nrf52_4.0.3 from s132_nrf52_3.0.0.

Required changes

SoftDevice RAM usage

The RAM usage of the SoftDevice has changed. should be used to find the for a particular configuration.sd_ble_enable() APP_RAM_BASE

New configuration API

Configuration parameters passed to have been moved to the SoftDevice configuration API.sd_ble_enable()

API updates

A new SV call is added to set the configuration. This API can be called many times to configure different parts of the BLE stack. All configurations are optional. Configuration sd_ble_cfg_set()
parameters not set by this API will take their default values.
The SV call parameter ble_enable_params_t * p_ble_enable_params is removed from . The SV call must be used instead. The parameters of this sd_ble_enable() sd_ble_cfg_set()
call are given in the following table:

Old API: ble_enable_params_t member New API: in cfg_id sd_ble_cfg_set()

common_enable_params.vs_uuid_count BLE_COMMON_CFG_VS_UUID

common_enable_params.p_conn_bw_counts BLE_CONN_CFG_GAP (*)

gap_enable_params.periph_conn_count
gap_enable_params.central_conn_count

central_sec_countgap_enable_params.

BLE_GAP_CFG_ROLE_COUNT

gap_enable_params.p_device_name BLE_GAP_CFG_DEVICE_NAME

gatt_enable_params BLE_CONN_CFG_GATT (*)

gatts_enable_params.service_changed BLE_GATTS_CFG_SERVICE_CHANGED

gatts_enable_params.attr_tab_size BLE_GATTS_CFG_ATTR_TAB_SIZE

Nordic Semiconductor Page 32 of 79

(*) These configurations can be set per link.

Usage

Example pseudo code to set per link ATT_MTU using the new configuration API:

const uint16_t client_rx_mtu = 158;
const uint32_t long_att_conn_cfg_tag = 1;

/* set ATT_MTU for connections identified by long_att_conn_cfg_tag */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection with long_att_conn_cfg_tag */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Establish connection with BLE_CONN_CFG_TAG_DEFAULT, it will use default ATT_MTU of 23 bytes */
sd_ble_gap_connect(..., BLE_CONN_CFG_TAG_DEFAULT);

[...]

Nordic Semiconductor Page 33 of 79

/* Start ATT_MTU exchange */
sd_ble_gattc_exchange_mtu_request(long_att_conn_handle, client_rx_mtu);

BLE bandwidth configuration

The BLE bandwidth configuration and application packet concept has been changed. Previously, the application could specify a bandwidth setting, which would result in a given queue size and a correpsonding
given radio time allocated. Now the queue sizes and the allocated radio time have been separated. The application can now configure:

Event length
Write without response queue size
Handle Value Notification queue size

These settings are configurable per link.

Note that now the configured queue sizes are not directly related to on-air bandwidth:

The application can configure one single packet to be queued in the SoftDevice, but still achieve full throughput if the application can queue packets fast enough during connection events.
Even if the application configures a large number of packets to be queued, not all of them will be sent during a single connection event if the configured event length is not large enough to send the
packets.

API updates

The ble_enable_params_t::common_enable_params.p_conn_bw_counts parameter of the SV call is replaced by the SV call with sd_ble_enable() sd_ble_cfg_set() cfg_id
parameter set to . The following table shows how the old bandwidth configuration corresponds to the new one for the default ATT_MTU:BLE_CONN_CFG_GAP

Old API: BLE_CONN_BWS New API: in ble_gap_conn_cfg_t::event_length sd_ble_cfg_set()

BLE_CONN_BW_LOW BLE_GAP_EVENT_LENGTH_MIN

BLE_CONN_BW_MID BLE_GAP_EVENT_LENGTH_DEFAULT

BLE_CONN_BW_HIGH 6

The bandwidth configuration is further described in the SDS.
The option is removed. Instead, during connection creation, the application should supply the defined by the BLE_COMMON_OPT_CONN_BW conn_cfg_tag ble_conn_cfg_t::conn_cfg_tag
parameter in the SV call.sd_ble_cfg_set()
A new parameter is added to and SV calls. To create a connection with a default configuration, conn_cfg_tag sd_ble_gap_adv_start() sd_ble_gap_connect() BLE_CONN_CFG_TAG_DEFAULT
should be provided in this parameter.
The event is split on two events: and .BLE_EVT_TX_COMPLETE BLE_GATTC_EVT_WRITE_CMD_TX_COMPLETE BLE_GATTS_EVT_HVN_TX_COMPLETE

Nordic Semiconductor Page 34 of 79

The SV call is removed. Instead, the application can now configure packet counts per link, using the SV call with the parameter set sd_ble_tx_packet_count_get() sd_ble_cfg_set() cfg_id
to and .BLE_CONN_CFG_GATTC BLE_CONN_CFG_GATTS

Usage

Example pseudo code to set configuration that corresponds to the old bandwidth configuration both in throughput and packet queueing capability:BLE_CONN_BW_HIGH

const uint32_t high_bw_conn_cfg_tag = 1;
ble_cfg_t cfg;

/* configure connections identified by high_bw_conn_cfg_tag */

/* set connection event length */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gap_conn_cfg.event_length = 6; /* 6 * 1.25 ms = 7.5 ms corresponds to the old
BLE_CONN_BW_HIGH for default ATT_MTU */
cfg.conn_cfg.params.gap_conn_cfg.conn_count = 1; /* application needs one link with this configuration */
sd_ble_cfg_set(BLE_CONN_CFG_GAP, &cfg, ...);

/* set HVN queue size */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gatts_conn_cfg.hvn_tx_queue_size = 7; /* application wants to queue 7 HVNs */
sd_ble_cfg_set(BLE_CONN_CFG_GATTS, &cfg, ...);

/* set WRITE_CMD queue size */
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = high_bw_conn_cfg_tag;
cfg.conn_cfg.params.gattc_conn_cfg.write_cmd_tx_queue_size = 0; /* application is not going to send WRITE_CMD,
so set to 0 to save memory */
sd_ble_cfg_set(BLE_CONN_CFG_GATTC, &cfg, ...);

Nordic Semiconductor Page 35 of 79

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t high_bw_conn_handle;
/* Establish connection with high_bw_conn_cfg_tag */
sd_ble_gap_adv_start(..., high_bw_conn_cfg_tag);

Data Length Update Procedure

The application now has to respond to the Data Length Update Procedure when initiated by the peer. See the description of the Data Length Update Procedure in the New functionality section for more details.

Required changes:

case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
{
 /* Allow SoftDevice to choose Data Length Update Procedure parameters automatically. */
 sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, NULL, NULL);
 break;
}
case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see p_ble_evt->evt.gap_evt.params.data_length_update.
effective_params for negotiated parameters. */
 break;
}

Access to registersRAM[x].POWER

Nordic Semiconductor Page 36 of 79

SoftDevice APIs are updated to provide access to the registers instead of the deprecated .RAM[x].POWER RAMON/RAMONB

API updates

 SV call is replaced with sd_power_ramon_set() sd_power_ram_power_set().
 SV call is replaced with sd_power_ramon_clr() sd_power_ram_power_clr().
 SV call is replaced with sd_power_ramon_get() sd_power_ram_power_get().

API rename

Some APIs were renamed. Applications that use the old names must be updated.

API updates

 is renamed to BLE_EVTS_PTR_ALIGNMENT .BLE_EVT_PTR_ALIGNMENT
 is renamed to BLE_EVTS_LEN_MAX .BLE_EVT_LEN_MAX

 is renamed to GATT_MTU_SIZE_DEFAULT .BLE_GATT_ATT_MTU_DEFAULT
The GAP option renamed to BLE_GAP_OPT_COMPAT_MODE is .BLE_GAP_OPT_COMPAT_MODE_1

 structure is renamed to ble_gap_opt_compat_mode_t .ble_gap_opt_compat_mode_1_t
 structure is renamed to ::mode_1_enableble_gap_opt_compat_mode_t member .ble_gap_opt_compat_mode_1_t::enable

ble_gap_opt_t:: structure is renamed to compat_mode member ble_gap_opt_t:: .compat_mode_1

Proprietary L2CAP API removed

The proprietary API for sending and receiving data over L2CAP is removed.

API updates

The SV calls , and are removed. , sd_ble_l2cap_cid_register() sd_ble_l2cap_cid_unregister() sd_ble_l2cap_tx()
 event is removed.BLE_L2CAP_EVT_RX

The following defines are removed: , , .BLE_L2CAP_MTU_DEF BLE_L2CAP_CID_INVALID , BLE_L2CAP_CID_DYN_BASE BLE_L2CAP_CID_DYN_MAX

New functionality

Data Length Update Procedure

The application is given control of the Data Length Update Procedure. The application can initiate the procedure and has to respond when initiated by the peer.

Nordic Semiconductor Page 37 of 79

API updates

A new SV call sd_ble_gap_data_length_update() is added to initiate or respond to a Data Length Update Procedure.
The event is replaced with .BLE_EVT_DATA_LENGTH_CHANGED BLE_GAP_EVT_DATA_LENGTH_UPDATE

 is added to notify that a request has been received. must be called by A new event BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST Data Length Update sd_ble_gap_data_length_update()
the application after this event has been received to continue the .Data Length Update Procedure
The GAP option is removed. The SV call should be used instead.BLE_GAP_OPT_EXT_LEN ()sd_ble_gap_data_length_update

Usage

The Data Length Update Procedure can be initiated locally or by peer device.
Following is the pseudo code for the case where Data Length Update Procedure is initiated by application:

const uint16_t client_rx_mtu = 247;
const uint32_t long_att_conn_cfg_tag = 1;

/* ATT_MTU must be configured first */
ble_cfg_t cfg;
memset(&cfg, 0, sizeof(ble_cfg_t));
cfg.conn_cfg.conn_cfg_tag = long_att_conn_cfg_tag;
cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = client_rx_mtu;
sd_ble_cfg_set(BLE_CONN_CFG_GATT, &cfg, ...);

/* Enable the BLE Stack */
sd_ble_enable(...);

[...]

uint16_t long_att_conn_handle;
/* Establish connection */
sd_ble_gap_adv_start(..., long_att_conn_cfg_tag);

[...]

/* Start Data Length Update Procedure, can be done without ATT_MTU exchange */

Nordic Semiconductor Page 38 of 79

ble_gap_data_length_params_t params = {
 .max_tx_octets = client_rx_mtu + 4,
 .max_rx_octets = client_rx_mtu + 4,
 .max_tx_time_us = BLE_GAP_DATA_LENGTH_AUTO,
 .max_rx_time_us = BLE_GAP_DATA_LENGTH_AUTO
};
sd_ble_gap_data_length_update(long_att_conn_handle, ¶ms, NULL);

[...]

case BLE_GAP_EVT_DATA_LENGTH_UPDATE:
{
 /* Data Length Update Procedure completed, see p_ble_evt->evt.gap_evt.params.data_length_update.
effective_params for negotiated parameters. */
 break;
}

New compatibility mode

A new compatibility mode is added to enable interoperability with central devices that may initiate version exchange and feature exchange control procedures in parallel. To enable this mode, use the sd_ble_op
 SV call with the parameter set to .t_set() opt_id BLE_GAP_OPT_COMPAT_MODE_2

Slave latency configuration

It is now possible to disable and enable slave latency on an active peripheral link. To disable or re-enable slave latency, use the SV call with the parameter set to sd_ble_opt_set() opt_id BLE_GAP_OPT_S
.LAVE_LATENCY_DISABLE

Support for high accuracy LFCLK oscillator source

It is now possible to configure the SoftDevice with higher accuracy LFCLK oscillator source. Four new levels are defined:

Nordic Semiconductor Page 39 of 79

#define NRF_CLOCK_LF_XTAL_ACCURACY_10_PPM (8) /**< 10 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_5_PPM (9) /**< 5 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_2_PPM (10) /**< 2 ppm */
#define NRF_CLOCK_LF_XTAL_ACCURACY_1_PPM (11) /**< 1 ppm */

RC oscillator: "xtal_accuracy" must be configured

In previous versions of the SoftDevice, the was ignored by the API when RCOSC was selected as the low frequency clock source. The default configuration used was 250 ppm. The RC xtal_accuracy
oscillator accuracy must now be configured by setting to to maintain the behavior of previous SoftDevices. The only nrf_clock_lf_cfg_t::xtal_accuracy NRF_CLOCK_LF_XTAL_ACCURACY_250_PPM
other valid configuration is . If the is set to any value other than 250 ppm or 500 ppm, a default configuration of 500 ppm will be applied.NRF_CLOCK_LF_XTAL_ACCURACY_500_PPM xtal_accuracy

New power failure levels

It is now possible to configure the SoftDevice with all the new power failure levels introduced in NRF52. Levels that are added:

NRF_POWER_THRESHOLD_V17 /**< Set the power failure threshold to 1.7 V. */
NRF_POWER_THRESHOLD_V18 /**< Set the power failure threshold to 1.8 V. */
NRF_POWER_THRESHOLD_V19 /**< Set the power failure threshold to 1.9 V. */
NRF_POWER_THRESHOLD_V20 /**< Set the power failure threshold to 2.0 V. */
NRF_POWER_THRESHOLD_V22 /**< Set the power failure threshold to 2.2 V. */
NRF_POWER_THRESHOLD_V24 /**< Set the power failure threshold to 2.4 V. */
NRF_POWER_THRESHOLD_V26 /**< Set the power failure threshold to 2.6 V. */
NRF_POWER_THRESHOLD_V28 /**< Set the power failure threshold to 2.8 V. */

Nordic Semiconductor Page 40 of 79

s132_nrf52_3.0.0
This section describes how to migrate to s132_nrf52_3.0.0 from s132_nrf52_2.0.1.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to . 0x1F000

If the project uses a scatter file or linker script instead, those must be updated accordingly.

The RAM usage of SoftDevice has also changed. should be used to find the APP_RAM_BASE for a particular configuration.sd_ble_enable()

LL Privacy

This SoftDevice brings in support for LL Privacy. All applications must be updated to the new Privacy API and whitelist API supporting this new feature. Refer to the description of LL privacy in the New
functionality section for more details.

Required changes:

Enable privacy

/* S132 v2.0 API usage */

ble_gap_addr_t private_addr = {0};
private_addr.addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_addr_set(BLE_GAP_ADDR_CYCLE_MODE_AUTO, private_addr);

Nordic Semiconductor Page 41 of 79

/* S132 v3.0 API usage */

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY;
privacy_params.private_addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
sd_ble_gap_privacy_set(privacy_params);

Disable privacy

/* S132 v2.0 API usage */

ble_gap_addr_t identity_addr = saved_identity_addr; /* From sd_ble_gap_addr_get(). */
sd_ble_gap_addr_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, identity_addr);

/* S132 v3.0 API usage */

ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_OFF;
sd_ble_gap_privacy_set(privacy_params);

Whitelist private addresses

/* S132 v2.0 API usage */

/* Public devices. */
ble_gap_addr_t public_device1 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,

Nordic Semiconductor Page 42 of 79

 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}};
ble_gap_addr_t public_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60}};

/* IRKs of Private devices. */
ble_gap_irk_t irk1 = { .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble_gap_irk_tt irk2 = { .irk = { 0x01, 0x02, 0x03 /*...*/} };

ble_gap_addr_t * whitelist_addrs[2] = {&public_device1, &public_device2};
ble_gap_irk_t * whitelist_irks[2] = {&irk1, &irk2};
ble_gap_whitelist_t whitelist = {
 .pp_addrs = &whitelist_addrs, .addr_count = 2, /* Public devices. */
 .pp_irks = &whitelist_irks, .irk_count = 2, /* Private devices. */};

ble_gap_adv_params_t adv_params = {0};
adv_params.p_whitelist = &whitelist
sd_ble_gap_adv_start(&adv_params);

/* S132 v3.0 API usage */

ble_gap_addr_t public_device1 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
};
ble_gap_addr_t public_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60},
};
 /* Private devices. Matches addresses in identity list. */
ble_gap_addr_t private_device1 = {

Nordic Semiconductor Page 43 of 79

 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6}
};
ble_gap_addr_t private_device2 = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},
};
ble_gap_addr_t * whitelist[4] = {
 &public_device1, &public_device2,
 &private_device1, &private_device2,
};
ble_gap_id_key_t identity1 = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6},},
 .id_info ={
 .irk = { 0x10, 0x20, 0x30 /*...*/},}
};
ble_gap_id_key_t identity2 = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},},
 .id_info = {
 .irk = { 0x01, 0x02, 0x03 /*...*/},}
};

ble_gap_id_key_t * identities[2] = { &identity1, &identity2 };
sd_ble_gap_device_identities_set(&identities, NULL /* Don't use local IRKs*/, 2);
sd_ble_gap_whitelist_set(&whitelist, 4);
ble_gap_adv_params_t adv_params = {0};
adv_params.fp = BLE_GAP_ADV_FP_FILTER_BOTH;
sd_ble_gap_adv_start(&adv_params);

Nordic Semiconductor Page 44 of 79

Private address information returned in BLE events

/* S132 v2.0 API usage */

/* GAP connection parameter */
ble_gap_evt_connected_t conn_evt;
conn_evt.irk_match; /* Set to true if IRK matched. */
conn_evt.irk_match_idx; /* Set to index into pp_irks in whitelist.*/
conn_evt.peer_addr; /* Set to the private resolvable address of the peer.*/

/* S132 v3.0 API usage */

/* ble_gap_addr_t has been updated.
The events ble_gap_evt_connected_t, ble_gap_evt_adv_report_t
and ble_gap_evt_scan_req_report_t are affected. */
ble_gap_addr_t.addr_id_peer; /* Set to true if IRK matched */
ble_gap_addr_t.addr; /* Set to the identity address of the peer,
 i.e the one in the identity list matching the
 peer IRK.*/

Central connection to peers using private address

/* S132 v2.0 API usage */

/* IRK of the Private device. */
ble_gap_irk_t irk1 = { .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble_gap_irk_t * whitelist_irk[1] = {&irk1};
ble_gap_whitelist_t whitelist = {

Nordic Semiconductor Page 45 of 79

 .pp_irks = &whitelist_irk, .irk_count = 1,};

ble_gap_scan_params_t scan_params = {
.selective = true, p_whitelist = &whitelist};
sd_ble_gap_connect(NULL, &scan_params, &conn_params);

/* S132 v3.0 API usage */

ble_gap_addr_t peer_addr = {
 .addr_id_peer = 1;
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC;
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A};
}
sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

LE Ping

The LE ping feature is now supported by the SoftDevice. A new timeout source has been added. All applications must handle this event from the SoftDevice according BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD
to the API documentation. Refer to the description of LE Ping in the New functionality section for more details.

Required changes:

/* S132 v3.0 API usage */

/* Ignore the authenticated payload timeout event */
case BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD:
 break;

Nordic Semiconductor Page 46 of 79

Configurable ATT_MTU

The feature of configurable ATT_MTU is now supported by the SoftDevice. A new event has been added. All applications must handle this event from the BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST
SoftDevice according to the API documentation. Refer to the description of configurable ATT_MTU in the New functionality section for more details.

Required changes:

/* S132 v3.0 API usage */

/* Respond with default ATT_MTU, if peer initiates an ATT_MTU exchange procedure. */
case BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
 sd_ble_gatts_exchange_mtu_reply(p_ble_evt->evt.gatts_evt.conn_handle, GATT_MTU_SIZE_DEFAULT);
 break;

New functionality

Configurable ATT_MTU

The Configurable ATT_MTU feature enables the ATT protocol to use packets longer than the default of 23 bytes. This can be useful for example to reduce complexity of GATTC and GATTS procedures used to
handle longer Characteristic Value, where a single "Write Request" can be used instead of the whole "Queued Writes" procedure.

API updates

A new BLE initialization structure, , has been added to ble_gatt_enable_params_t ble_enable_params_t for configuring the maximum ATT_MTU the SoftDevice can send or receive.
A new SV call, sd_ble_gattc_exchange_mtu_request(), has been added for starting an ATT_MTU exchange.
A new SV call, sd_ble_gatts_exchange_mtu_reply(), has been added for setting the ATT_MTU in ATT_MTU response.
A new event, BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST, has been added to to notify that an ATT_MTU request has been received. mBLE_GATTS_EVTS sd_ble_gatts_exchange_mtu_reply()
ust be called by the application, after this event has been received, to continue the ATT_MTU exchange procedure.
A new event, BLE_GATTC_EVT_EXCHANGE_MTU_RSP, has been added to to notify that an ATT_MTU response has been received. This event marks the end of the ATT_MTU BLE_GATTC_EVTS
exchange procedure and indicates the . server ATT_MTU

Usage

Nordic Semiconductor Page 47 of 79

ATT_MTU exchange can be initiated locally or by peer device.
HVx and service changed cannot run while a local client initiated ATT_MTU exchange is active. The SV calls and will return sd_ble_gatts_hvx() sd_ble_gatts_service_changed()
NRF_ERROR_INVALID_STATE if a .local client initiated ATT_MTU exchange is ongoing
Following is the pseudo code for case where ATT_MTU exchange is initiated by application:

ble_enable_params_t enable_params = {0};

/* Set maximum ATT_MTU the SoftDevice can send or receive */
enable_params.gatt_enable_params.att_mtu = 158;

/* Set other BLE Initialization parameters */

/* Enable the BLE Stack */
sd_ble_enable(&enable_params, ...);

[...]

uint16_t conn_handle;
/* Establish connection */

[...]

/* Start ATT_MTU exchange */
sd_ble_gattc_exchange_mtu_request(conn_handle, client_rx_mtu);

[...]

uint16_t effective_att_mtu;
uint16_t server_rx_mtu;
/* Handle the event */
case BLE_GATTC_EVT_EXCHANGE_MTU_RSP:
 server_rx_mtu = p_ble_evt->evt.gattc_evt.params.exchange_mtu_rsp.server_rx_mtu;

Nordic Semiconductor Page 48 of 79

 /* New ATT_MTU is now applied to GATT procedures for this connection */
 /*Note
 The SoftDevice sets ATT_MTU to the minimum of:
 - The Client RX MTU value from BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST, and
 - The Server RX MTU value.

 However, the SoftDevice never sets ATT_MTU lower than GATT_MTU_SIZE_DEFAULT.
 */
 /* Store ATT_MTU for later use */
 effective_att_mtu = MIN(MAX(GATT_MTU_SIZE_DEFAULT, server_rx_mtu)
 , client_rx_mtu
);

LE Ping

The LE Ping feature can be used by the application to configure a link to try to have at least one authenticated packet exchange within a configurable timeout period. If the peer device does not send an
authenticated packet within the timeout, a timeout event is generated to notify this to the application.

API updates

A new GAP option, , has been added to set the authenticated payload timeout.BLE_GAP_OPT_AUTH_PAYLOAD_TIMEOUT
A new GAP timeout source, , has been added to indicate that the authenticated payload timer has expired.BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD

Usage

/* Enable the BLE Stack */

[...]

/* Establish connection */

[...]

Nordic Semiconductor Page 49 of 79

/* Authenticated payload timer runs with default value.
Set the authenticated payload timeout for the link, if required to be something else then the default */
gap_opt.auth_payload_timeout.conn_handle = connection_handle;
gap_opt.auth_payload_timeout.auth_payload_timeout = 1000;
gap_opt_set(BLE_GAP_OPT_AUTH_PAYLOAD_TIMEOUT, &gap_opt);

[...]

/* Handle the event */
case BLE_GAP_TIMEOUT_SRC_AUTH_PAYLOAD:
 /* Handling of the event is application dependent. It can be ignored if not used by application. */
 break;

LE Data Packet Length Extension (DLE)

The LE Data Packet Length Extension feature enables the SoftDevice to use longer packets on the link layer level. Now link layer packets with up to 251 bytes payload are supported.

API updates

A new GAP option, , has been added to set the maximum Link Layer PDU length to be used in DLE.BLE_GAP_OPT_EXT_LEN
A new event, , has been added to indicate that the Link Layer PDU length has changed.BLE_EVT_DATA_LENGTH_CHANGED

Usage

Default max Link Layer PDU is 27 bytes.
BLE_GAP_OPT_EXT_LEN changes the max length for all future links.
Example pseudo code:

/* Enable the BLE Stack */

[...]

Nordic Semiconductor Page 50 of 79

/* Set max Link Layer PDU length, if application wants it to be more than 27bytes */
gap_opt.ext_len.rxtx_max_pdu_payload_size = 54; //Example: set max length to 54bytes
gap_opt_set(BLE_GAP_OPT_EXT_LEN, &gap_opt);

[...]

/* Establish connection */

[...]

/* Handle the event */
case BLE_EVT_DATA_LENGTH_CHANGED:
 /* Handling of the event is application dependent. It can be ignored if not used by application. */

LL Privacy

The LL Privacy feature provides similar functionality as the privacy in the previous version of the SoftDevice. In addition, it supports new use cases like enabling privacy for directed advertising and advanced
filter policy for scanning.

API updates

New SV calls, and , are added to set and get the privacy settings. is defined to be used with these calls.sd_ble_gap_privacy_set() sd_ble_gap_privacy_get() ble_gap_privacy_params_t
The GAP option is removed. The SV calls and should be used instead.BLE_GAP_OPT_PRIVACY sd_ble_gap_privacy_set() sd_ble_gap_privacy_get()
A new GAP characteristic, , has been added for Central Address Resolution.BLE_UUID_GAP_CHARACTERISTIC_CAR
The SV calls and have been renamed to and respectively.sd_ble_gap_address_set () sd_ble_gap_address_get() sd_ble_gap_addr_set() sd_ble_gap_addr_get()
A new SV call, , has been added to set the whitelist. The configured whitelist is shared among all BLE roles.sd_ble_gap_whitelist_set()
A new SV call, , has been added to set the identity list. The configured identity list is shared among all BLE roles.sd_ble_gap_device_identities_set()
New definitions, and , have been added.BLE_GAP_PRIVACY_MODE_OFF BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY
Two new GAP error codes, and , have been added.BLE_ERROR_GAP_DEVICE_IDENTITIES_IN_USE BLE_ERROR_GAP_DEVICE_IDENTITIES_DUPLICATE
Address cycling, and , is removed from GAP API . Address will always cycle if privacy is enabled BLE_GAP_ADDR_CYCLE_MODE_NONE BLE_GAP_ADDR_CYCLE_MODE_AUTO sd_ble_gap_addr_set()
by .sd_ble_gap_privacy_set()
New definitions, and , have been added for address cycle intervals.BLE_GAP_DEFAULT_PRIVATE_ADDR_CYCLE_INTERVAL_S BLE_GAP_MAX_PRIVATE_ADDR_CYCLE_INTERVAL_S
BLE_GAP_WHITELIST_IRK_MAX_COUNT is renamed to .BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT
A new field, , has been added in the , which indicates an IRK/identity match of a peer.addr_id_peer ble_gap_addr_type_t

Nordic Semiconductor Page 51 of 79

ble_gap_whitelist_t is removed because it is not used anymore. This also means that it is removed from and . ble_gap_adv_params_t ble_gap_scan_params_t sd_ble_gap_whitelist_s
 is supposed to be used instead for setting the whitelist.et()

ble_gap_scan_params_t is updated. " " field has been added to enable extended scanner filter policies.adv_dir_report
ble_gap_evt_connected_t is updated. " ", " " and " " fields are removed. " " is now given by " " fileld in " ".own address irk_match irk_match_index irk_match addr_id_peer peer_addr
ble_gap_evt_adv_report_t is updated and a new field, " ", has been added to support extended scanner filter policy.direct_addr

Usage

Example pseudo code using the new privacy API:

/* Enable the BLE Stack */

[...]

/* Enable privacy */
ble_gap_privacy_params_t privacy_params = {0};
privacy_params.privacy_mode = BLE_GAP_PRIVACY_MODE_DEVICE_PRIVACY;
privacy_params.private_addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
privacy_params.private_addr_cycle_s = 0; /* Default cycle period will be used. */
privacy_params.p_device_irk = &own_irk;
sd_ble_gap_privacy_set(&privacy_params);

[...]

/* start scanner and get adv_report */

[...]

/* Connect to chosen advertiser(advertiser using private address). */
ble_gap_addr_t peer_addr = {
 .addr_id_peer = 0;
 .addr_type = BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE;
 .addr = {0xCC, 0xBB, 0xAA, 0xAA, 0xBB, 0xCC};
}

Nordic Semiconductor Page 52 of 79

sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

[...]

/* Perform bonding */

[...]

/* With IRK exchanged, the identity list can be configured to enable address resolution.*/
ble_gap_id_key_t identity = {
 .id_addr_info = {
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A},},
 .id_info = {
 .irk = { 0x01, 0x02, 0x03 /*...*/},}
};
ble_gap_id_key_t * identities[] = { &identity };
sd_ble_gap_identities_set(&identities, NULL, 1);

[...]

/* For all future connections, IRK filtering will be performed. */
ble_gap_addr_t peer_addr = {
 .addr_id_peer = 1;
 .addr_type = BLE_GAP_ADDR_TYPE_PUBLIC,
 .addr = {0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A}
}
sd_ble_gap_connect(&peer_addr, &scan_params, &conn_params);

[...]

/* It is also possible to use extended filter policy to perform IRK resolution on directed adv reports. */

Nordic Semiconductor Page 53 of 79

ble_gap_scan_params_t scan_params;
scan_params.adv_dir_report = 1;
sd_ble_gap_scan_start(&scan_params);

[...]

/* Handle the event */
case BLE_GAP_EVT_ADV_REPORT:
 /* Adv report will also be generated for directed advertisements where
 the initiator field is set to a private resolvable address, even if
 the address did not resolve to an entry in the device identity list.*/
 if (ble_evt->adv_report.type == BLE_GAP_ADV_TYPE_ADV_DIRECT_IND)
 {
 if (ble_evt->adv_report.direct_addr.addr_type ==
 BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
 {
 // The initiator address is not resolved
 }
 else
 {
 // The initiator address is resolved
 }
 }

Connection Event Length Extension

This feature can be used to dynamically extend the connection event length when possible to send extra packets compared to the configured bandwidth in a connection interval.

API updates

A new option, , has been added to for enabling/disabling of this feature. BLE_COMMON_OPT_CONN_EVT_EXT BLE_COMMON_OPTS

Nordic Semiconductor Page 54 of 79

Usage

This feature of dynamic extension of connection event length is disabled by default.
The option can be used to enable/disable this feature. This will result in enabling/disabling this feature for all currently active links and also for all future links.BLE_COMMON_OPT_CONN_EVT_EXT

Full length device name

The maximum possible length of the device name has been increased, and it is now possible to set a device name up to 248 bytes.

API updates

A new parameter, , has been added to for setting full length device name.ble_gap_device_name_t sd_ble_enable()

Usage

Example pseudo code:

ble_enable_params_t enable_params = {0};

/* Set the device name, if application wants to set anything longer than BLE_GAP_DEVNAME_DEFAULT_LEN */
ble_gap_device_name_t device_name = {0};
uint8_t device_name_buff[BLE_GAP_DEVNAME_MAX_LEN] = "My very long exciting application name";
device_name.vloc = BLE_GATTS_VLOC_STACK; /*Note: Device name will occupy space in Attribute Table.*/
device_name.p_value = device_name_buff;
device_name.max_len = sizeof(device_name_buff);
device_name.current_len = strlen((char *)device_name_buff);
enable_params.gap_enable_params.p_device_name = &device_name;

/* Set other BLE Initialization parameters */
sd_ble_enable(&enable_params, ...);

[...]

Nordic Semiconductor Page 55 of 79

Max BLE event length calculation

The maximum size of a BLE event can now be calculated to optimize the size of event buffer memory.

API updates

A new macro, , has been added to find out the maximum size of BLE events.BLE_EVTS_LEN_MAX

Usage

/* Old API: */

uint8_t evt[sizeof(ble_evt_t) + BLE_L2CAP_MTU_DEF];
uint16_t evt_len = sizeof(evt);

errcode = sd_ble_evt_get(evt, &evt_len);

/* New API: */

uint8_t evt[BLE_EVTS_LEN_MAX(GATT_MTU_SIZE_DEFAULT)];
uint16_t evt_len = sizeof(evt);

errcode = sd_ble_evt_get(evt, &evt_len);

Other miscellaneous updates

 The SoftDevice Information Structure has been updated and new access macros have been added. Note that this these updates are for Nordic internal use and should not be used by the application.
New access macros for general purpose retention registers have been added.

API diff

Nordic Semiconductor Page 56 of 79

A diff of the API changes between versions s132_nrf52_3.0.0 and s132_nrf5x_2.0.1 is provided with this release. Refer to the file . s132_nrf52_3.0.0_API-update.diff

Nordic Semiconductor Page 57 of 79

s13x_nrf5x_2.0.1
This section describes how to migrate to s13x_nrf5x_2.0.1 from s130_nrf51_1.0.0.

Required changes

SoftDevice size

The size of the SoftDevice has changed requiring a change to the application project file.

For Keil this means:

Go into the properties of the project and find the Target tab
Change IROM1 Start to (s130) or (s132).0x1B000 0x1C000

If the project uses a scatter file or linker script instead, those must be updated accordingly.

SVC number changes

The SVC numbers in use by the SoftDevice have been changed so the application needs to be recompiled against the new header files.

Fault handling

The SoftDevice has changed the way it handles unrecoverable errors, now known as "faults". SoftDevice assertions were reported to the application in previous releases, now a wider range of faults has been
introduced and a new handling mechanism. The new format for the fault handler to be supplied to reflects this.sd_softdevice_enable()

The old

typedef void (*softdevice_assertion_handler_t)(uint32_t pc, uint16_t line_number, const uint8_t * p_file_name);

is now replaced by:

typedef void (*nrf_fault_handler_t)(uint32_t id, uint32_t pc, uint32_t info);

The application code must now provide a fault handler in the above format. The source of the fault is provided in the fault ID parameter () and the value of the program counter at the time of the fault is id
provided in the program counter parameter () . So far the SoftDevice defines the following fault IDs:pc

Nordic Semiconductor Page 58 of 79

NRF_FAULT_ID_SD_ASSERT: The SoftDevice has triggered an assertion. Record the value of the parameter and make it available to the Nordic support team to start an internal investigation. pc

(s132 only) : The application has triggered an unallowed memory access. The value of the parameterNRF_FAULT_ID_APP_MEMACC pc will contain the address of the instruction that executed the
. To find out the filename and line number within your application source code that correspond to the you can use the invalid memory access, or the address of the instruction following the violation pc

appropriate tool provided with your toolchain. For example if your linker outputs files in the ELF format you can use the addr2line tool which is part of the GNU ARM Embedded toolchain for this purpose.
Note that you don't need to have compiled with GCC to use addr2line, and that there are several common filename extensions for ELF files, e.g. .elf, and .axf.

// Syntax
arm-none-eabi-addr2line <pc> -e application.elf

// Example, pc=0x01da6a
$ arm-none-eabi-addr2line 0x01da6a -e app_beacon.elf
C:\dev\app_beacon\src\main.c:34

Please note that as part of this transition from asserts to faults the previously distributed file is no longer part of the public API.softdevice_assert.h

Oscillator configuration

The configuration of the 32 kHz RCOSC calibration in has been made more flexible. It now supports more calibration intervals, and the ability to combine temperature and time sd_softdevice_enable()
triggered calibration.

sd_softdevice_enable(nrf_clock_lf_cfg_t const * p_clock_lf_cfg, nrf_fault_handler_t fault_handler));

// Example configuration equivalent to the old NRF_CLOCK_LFCLKSRC_RC_250_PPM_TEMP_1000MS_CALIBRATION
nrf_clock_lf_cfg_t rc_cfg = {
 .source = NRF_CLOCK_LF_SRC_RC,
 .rc_ctiv = 4, // Check temperature every 4 * 250ms
 .rc_temp_ctiv = 1, // Only calibrate if temperature has changed.
};

sd_softdevice_enable(&rc_cfg, &app_fault_handler);

// Example configuration equivalent to the old NRF_CLOCK_LFCLKSRC_XTAL_75_PPM
nrf_clock_lf_cfg_t xtal_cfg = {

Nordic Semiconductor Page 59 of 79

 .source = NRF_CLOCK_LF_SRC_XTAL,
 .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_75_PPM
};

sd_softdevice_enable(&xtal_cfg, &app_fault_handler);

// Recommended configuration for using the RC oscillator with s132 (see nrf_sdm.h for details)
nrf_clock_lf_cfg_t rc_cfg = {
 .source = NRF_CLOCK_LF_SRC_RC,
 .rc_ctiv = 16, // Check temperature every 4 seconds
 .rc_temp_ctiv = 2, // Calibrate at least every 8 seconds even if the temperature hasn't changed
};

sd_softdevice_enable(&rc_cfg, &app_fault_handler);

App priorities

The enumeration has been removed. Application developers must use the interrupt priority levels directly instead.NRF_APP_PRIORITIES

For s130 the interrupt priority levels available to the application are: and .1 3

For s132 the interrupt priority levels are: , , and . available to the application 2 3 6 7

SEVONPEND flag and high interrupt priorities

Applications must modify the flag in the register when running in priority level 1 for s130 and priority levels 2 or 3 for s132.not SEVONPEND SCR

Type definitions

Type definitions for certain basic types have been removed. The following type definitions must be replaced with :uint8_t

nrf_power_mode_t, , , nrf_power_failure_threshold_t nrf_radio_notification_distance_t nrf_radio_notification_type_t

and the following must be replaced with :uint32_t

Nordic Semiconductor Page 60 of 79

nrf_app_irq_priority_t nrf_power_dcdc_mode_t

MBR size

The macro has been moved to .MBR_SIZE nrf_mbr.h

Changes to the sd_nvic_* API

The sd API functions have changed from being SV calls into the SoftDevice to being static functions implemented in a new header file, . This header file must be included in all source files _nvic_* nrf_nvic.h
that call any API function than begins with . If a project includes in any of its source files, one of them must declare and zero initialize a global instance of in the sd_nvic_ nrf_nvic.h nrf_nvic_state_t
form:

nrf_nvic_state_t nrf_nvic_state = {0};

Flash protection

The flash protection API now takes 4 parameters, only the first 2 of which are applicable for the s130:

sd_flash_protect(uint32_t block_cfg0, uint32_t block_cfg1, uint32_t block_cfg2, uint32_t block_cfg3);

Radio Timeslot API macro changes

The macros for high frequency clock configuration have been renamed in the Radio Timeslot API:

NRF_RADIO_HFCLK_CFG_DEFAULT and NRF_RADIO_HFCLK_CFG_FORCE_XTAL
are now and NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED NRF_RADIO_HFCLK_CFG_NO_GUARANTEE

The default is now which guarantees that the high frequency clock source is the crystal for the whole duration of the timeslot. This should be the preferred option NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED
for events that use the radio or require high timing accuracy.

SoftDevice runtime configuration

The number of Vendor Specific UUIDs, connection count and bandwidth are now configurable on using the new parameters in the substructures of Those new sd_ble_enable() ble_enable_params_t.

parameters are listed below:

vs_uuid_count: The number of Vendor Specific UUID bases that the SoftDevice will reserve space for. Formerly this number was fixed and set to .BLE_UUID_VS_MAX_COUNT
p_conn_bw_counts: The optional connection bandwidth configuration structure. This determines the amount of memory that the SoftDevice will reserve for packets. See the bandwidth configuration
section for more details.
periph_conn_count: The total amount of concurrent connections as a peripheral that will be available to the application.
central_conn_count: The total amount of concurrent connections as a central that will be available to the application.

Nordic Semiconductor Page 61 of 79

1.
2.
3.
4.

central_sec_count: The total amount of concurrent pairing procedures that will be available to the application to be shared among all connections as a central.

If the maximum number of connections supported by the SoftDevice is exceeded in the call to the SoftDevice will return .sd_ble_enable() NRF_ERROR_CONN_COUNT

SoftDevice RAM usage

At runtime the IC's RAM is split into 2 regions: The SoftDevice RAM region (between and APP_RAM_BASE-1) and the application RAM region (between APP_RAM_BASE and the call stack). The 0x20000000
start address of the application RAM region (APP_RAM_BASE) is dependent on the configuration provided to the SoftDevice in the call to .sd_ble_enable()

The call has a new parameter. sd_ble_enable()

uint32_t sd_ble_enable(ble_enable_params_t * p_ble_enable_params)
uint32_t sd_ble_enable(ble_enable_params_t * p_ble_enable_params, uint32_t * p_app_ram_base)

The new parameter should be set by the application to APP_RAM_BASE. The SoftDevice will return the minimum APP_RAM_BASE required by the SoftDevice for the configuration. If the *p_app_ram_base
APP_RAM_BASE provided by the application is smaller than the APP_RAM_BASE returned by the SoftDevice, will return .sd_ble_enable() NRF_ERROR_NO_MEM

: The nRF5 SDK provides definitions for common configurations and several toolchains. You can skip the rest of this section if you plan to use the nRF5 SDK examples directly and do not intend to create Note
new configurations.

The application must always provide the current starting address of its RAM area (as defined in the project file, scatter file or linker script) as the parameter to *p_app_ram_base sd_ble_enable(). Failure to

do so might result in the SoftDevice overwriting the application memory area and/or memory access violations. Most toolchains provide a linker symbol for the starting address of their RAM area, referred to as __
LINKER_APP_RAM_BASE in this documentation.

The following table shows examples of linker symbols that can define The actual value will depend on the project file, scatter file or linker script settings.__LINKER_APP_RAM_BASE for different toolchains.

Toolchain __LINKER_APP_RAM_BASE

ARMCC/Keil Image$$RW_IRAM1$$Base

IAR __ICFEDIT_region_RAM_start__

GCC __data_start__

The recommended approach to obtaining and maintaining the required APP_RAM_BASE for the application is the following:

In your project file, scatter file or linker script, set the starting address of your application's RAM (APP_RAM_BASE) to at least the minimum APP_RAM_BASE specified in the release notes.
In your application's source code, set the value of to . *p_app_ram_base __LINKER_APP_RAM_BASE
Set the desired parameters to be provided to .sd_ble_enable()
Compile, link and run the application.

Nordic Semiconductor Page 62 of 79

5.

6.
7.

If the amount of memory assigned to the SoftDevice by is large enough to fit the configuration, will return , otherwise it will return *p_app_ram_base sd_ble_enable() NRF_SUCCESS NRF_ERROR_NO
._MEM

On return of will contain the APP_RAM_BASE required for the given configuration.,sd_ble_enable() *p_app_ram_base
In your project file, scatter file or linker script, update the starting address of your application's RAM (APP_RAM_BASE) to *p_app_ram_base and recompile the application.from step 6,

Please note that it is possible to run the application with APP_RAM_BASE set higher than the minimum required by the selected configuration. Doing so will result in an area of memory being unused located
between the SoftDevice's and the application's memory areas.

Enabling the BLE Stack

ble_enable_params_t params;
uint32_t retv;
uint32_t app_ram_base;

memset(¶ms, 0x00, sizeof(params));
/* set the number of Vendor Specific UUIDs to 5 */
params.common_enable_params.vs_uuid_count = 5;
/* this application requires 1 connection as a peripheral */
params.gap_enable_params.periph_conn_count = 1;
/* this application requires 3 connections as a central */
params.gap_enable_params.central_conn_count = 3;
/* this application only needs to be able to pair in one central link at a time */
params.gap_enable_params.central_sec_count = 1;
/* we require the Service Changed characteristic */
params.gatts_enable_params.service_changed = 1;
/* the default Attribute Table size is appropriate for our application */
params.gatts_enable_params.attr_tab_size = BLE_GATTS_ATTR_TAB_SIZE_DEFAULT;

/* set app_ram_base to the starting memory address of the application RAM,
 obtained directly from the linker */
app_ram_base = __LINKER_APP_RAM_BASE;
/* enable the BLE Stack */
retv = sd_ble_enable(¶ms, &app_ram_base);
if(retv == NRF_SUCCESS)

Nordic Semiconductor Page 63 of 79

{
 /* Verify that __LINKER_APP_RAM_BASE matches the SD calculations */
 if(app_ram_base != __LINKER_APP_RAM_BASE)
 {
 /* The application's starting RAM address is higher than the one required for this
configuration.
 An area of memory will remain unused between the SoftDevice and the application memory areas.
 To detect this, place a breakpoint here and/or output (app_ram_base)
 through a debug interface.
 */
 }
}
else if(retv == NRF_ERROR_NO_MEM)
{
 /* The application's starting RAM address is lower than the one required for this configuration.
 This is an unrecoverable error because the SoftDevice and the application memory areas overlap.
 To detect this, place a breakpoint here and/or output (app_ram_base)
 through a debug interface.
 */
 while(1){}
}

Default Attribute Table size changed

The default Attribute Table size has gone down from 0x600 bytes to 0x580 bytes. If the application is not setting a custom Attribute Table size and it is filling it completely, it will now need to configure a larger,
non-default memory area size dedicated to it () in the call to sd_ble_enable(). ble_gatts_enable_params_t::attr_tab_size

(s130 only) CPU and Radio mutual exclusion option removed

The option is no longer part of the SoftDevice API so applications making use of it will need to remove all code using it. The option is no longer necessary since this BLE_COMMON_OPT_RADIO_CPU_MUTEX
version of the SoftDevice is only compatible with IC revision 3 of the nRF51 series, which no longer requires mutual exclusion between the radio and the CPU during operation.

TX packet management

Nordic Semiconductor Page 64 of 79

The user TX packet management has been modified to adapt it to the fact that different connections can now make different packet counts available to the application, depending on the role and bandwidth
configuration. This means that the application now needs to obtain the TX packet count each connection is established, and needs also to keep an independent variable for the TX packet count of each after
connection.

The prototype has been therefore renamed and adapted:

uint32_t sd_ble_tx_buffer_count_get(uint8_t *p_count)
uint32_t sd_ble_tx_packet_count_get(uint16_t conn_handle, uint8_t *p_count)

Here's an example of an application obtaining the TX packet count for a particular connection and storing it in a global variable for later use:

case BLE_GAP_EVT_CONNECTED:
 uint8_t count;
 uint16_t conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
 sd_ble_tx_packet_count_get(conn_handle, &count);
 /* store TX packet count for later use */
 tx_packet_counts[conn_handle] = count;
 break;

TX power setting

The SV call now accepts the following values as the lowest power setting:sd_ble_gap_tx_power_set()

s130: -30dBm
s132: -40dBm

If the application code made use of values different from those in its minimum power output mode it will have to be adapted it to conform with the changes.

Additional link field in the key distribution bitfield

The bitfield now includes an additional bit. This by the application since it is only intended for use with dual-mode BR/EDR+BLE solutions.ble_gap_sec_kdist_t link must always be set to 0

Additional lesc field in the encryption information structure

A new bit has been added to the structure. It is important to initialize this bit correctly when loading stored security keys, so that the SoftDevice can set the connection's security lesc ble_gap_enc_info_t
level accordingly.

Nordic Semiconductor Page 65 of 79

Additional fields in the security parameters

Two new fields have been added to :ble_gap_sec_params_t

lesc: This enables LE Secure Connections locally when starting a pairing or bonding procedure. If the application does not wish to use LE Secure Connections and instead use legacy pairing simply set
this bit to 0.
keypress: This enables keypress notifications locally when starting a pairing or bonding procedure. Keypress notifications can be used whenever the Passkey Entry pairing method is selected, both in
legacy pairing or LE Secure Connections.

Both fields need to be initialized to the desired value by applications transitioning to this SoftDevice version.

Security keys identification by locality instead of by GAP role

The security keys included in are no longer identified by GAP role, but rather by associating them with the local device (own) or with the remote device (peer):ble_gap_sec_keyset_t

keys_periphble_gap_sec_keyset_t:: and are now expressed in terms of and keys_centralble_gap_sec_keyset_t:: ble_gap_sec_keyset_t::keys_own ble_gap_sec_keyset_t::
keys_peer

kdist_periph::ble_gap_sec_params_t and are now expressed in terms of and kdist_centralble_gap_sec_params_t:: ble_gap_sec_params_t::kdist_own ble_gap_sec_params
_t::kdist_peer

kdist_periph::ble_gap_evt_auth_status_t and are now expressed in terms of and kdist_central::ble_gap_evt_auth_status_t ble_gap_evt_auth_status_t::kdist_own ble
_gap_evt_auth_status_t::kdist_peer

For example, a multi-role application wanting to distribute its own LTK when acting as a peripheral, but only its IRK when acting as a central and that always accepts IRKs from the peer no matter the role:

/* Connected */
if(own_role == BLE_GAP_ROLE_PERIPH)
{
 sec_params.kdist_own.enc = 1;
}
else /* BLE_GAP_ROLE_CENTRAL */
{
 sec_params.kdist_own.id = 1;
}
sec_params.kdist_peer.id = 1;

Identity key distribution change

Nordic Semiconductor Page 66 of 79

When distributing Identity keys during a bonding procedure, the handling of the pointers within the structure has changed in the following manner:ble_gap_sec_keyset_t

Setting to remains unchanged: the stack will continue to make use of the currently set Bluetooth address and IRK and distribute them to the ble_gap_sec_keyset_t::keys_own::p_id_key NULL
peer, but the application will not receive a copy in its memory
Setting to a valid pointer to a location in the application memory will distribute the same Bluetooth address and IRK as above (the currently set ble_gap_sec_keyset_t::keys_own::p_id_key
ones) and also make them available to the application

That means that if the application distributed a custom Bluetooth address and IRK using the following deprecated functionality:

/* Connected */
keyset.keys_own.p_id_key = &app_custom_id_key;
keyset.keys_own.p_id_addr_info = &custom_bdaddr;
sd_ble_gap_sec_params_reply(conn_handle, BLE_GAP_SEC_STATUS_SUCCESS, &sec_params, &keyset);

it will now have to manually set those before calling :sd_ble_gap_sec_params_reply()

/* Connected */
ble_opt_t opt;
sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, &app_custom_id_key.id_addr_info);
opt.gap_opt.privacy.p_irk = &app_custom_id_key.id_info;
opt.gap_opt.privacy.interval_s = APP_ADDR_REFRESH_S;
sd_ble_opt_set(BLE_GAP_OPT_PRIVACY, &opt);
keyset.keys_own.p_id_key = &distributed_id_key;
sd_ble_gap_sec_params_reply(conn_handle, BLE_GAP_SEC_STATUS_SUCCESS, &sec_params, &keyset);

GATT Server Read/Write events: attribute context removed

The type has been removed from the GATT Server API. The two structures that included an instance of it as a member now include instead a instance to identify ble_gatts_attr_context_t ble_uuid_t
the attribute:

ble_gatts_evt_write_t::context has been replaced by ble_gatts_evt_write_t::uuid
ble_gatts_evt_read_t::context has been replaced by ble_gatts_evt_read_t::uuid

Nordic Semiconductor Page 67 of 79

In practical usage most applications store the handles associated with a particular characteristic when populating the Attribute Table. Calculating the context for each incoming read or write operation was an
expensive and time-consuming task, and therefore the field has been removed and instead replaced by the attribute UUID. The combination of attribute handle and attribute UUID provided in the event structure
should be enough for the application to identify the attribute within the set that has been previously populated.

GATT Server Authorizable Write Commands

Whenever the application enables write authorization for a characteristic value or a descriptor in the Attribute Table (), all incoming write operations will now require ble_gatts_attr_md_t::wr_auth
application authorization. In particular this now includes Write Commands (also called Write Without Response) which will arrive in the same event form () but with a new field set (BLE_GATTS_EVT_WRITE ble_g

) to indicate to the application that the data has not been written into the Attribute Table. Upon handling of the event the application can decide whether it wants to write atts_evt_write_t::auth_required
the incoming data to the Attribute Table using or discard it.sd_ble_gatts_value_set()

Handling incoming authorizable Write Commands

case BLE_GATTS_EVT_WRITE:
 uint16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 uint16_t attr_handle = p_ble_evt->evt.gatts_evt.params.write.handle;
 uint16_t offset = p_ble_evt->evt.gatts_evt.params.write.offset;
 uint8_t *p_data = p_ble_evt->evt.gatts_evt.params.write.data;
 uint16_t dlen = p_ble_evt->evt.gatts_evt.params.write.len;
 if(p_ble_evt->evt.gatts_evt.params.write.auth_required)
 {
 /* incoming write command on an attribute requiring authorization,
 validate the incoming data pointed to by p_data */
 if(app_data_authorize(p_data, offset, dlen))
 {
 /* the application manually writes the incoming data (p_data) to the Attribute Table */
 ble_gatts_value_t value;
 value.len = dlen;
 value.offset = offset;
 value.p_value = p_data;
 sd_ble_gatts_value_set(conn_handle, attr_handle, &value);
 }
 }
 break;

Nordic Semiconductor Page 68 of 79

GATT Server Write Authorization and peer data

Applications making use of authorization to handle incoming write operations, and in particular Write Requests and app-handled Queued Writes, will now have to store the incoming data to be provided later to
the SoftDevice. Depending on how the application handles the authorization procedure, this can be done by providing the same pointer contained in the event field, or copying the data into a temporary storage
area if required.

Authorizing directly in the event handler:

case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
 if(p_ble_evt->evt.gatts_evt.params.authorize_request.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
 {
 uint16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 uint16_t offset = p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.offset;
 uint16_t dlen = p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.len;
 uint8_t *p_data = p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.data;
 /* incoming write command on an attribute requiring authorization, validate the data */
 if(app_data_authorize(p_data, offset, dlen))
 {
 ble_gatts_rw_authorize_reply_params_t auth_reply;
 auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
 auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
 auth_reply.params.write.update = 1;
 auth_reply.params.write.offset = offset;
 auth_reply.params.write.len = dlen;
 /* reuse the same pointer obtained from the event */
 auth_reply.params.write.p_data = p_data;

 sd_ble_gatts_rw_authorize_reply(conn_handle, &auth_reply);
 }
 }
 break;

Nordic Semiconductor Page 69 of 79

Authorizing outside of the event handler:

/* global variable storing the authorization data */
struct
{
 uint16_t conn_handle;
 uint16_t offset;
 uint16_t dlen;
 uint8_t data[MAX_DATA];
} auth_write;

[..]

case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
 if(p_ble_evt->evt.gatts_evt.params.authorize_request.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
 {
 /* store the metadata */
 auth_write.conn_handle = p_ble_evt->evt.gatts_evt.conn_handle;
 auth_write.offset = p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.offset;
 auth_write.dlen = p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.len;
 /* store the actual incoming data */
 memcpy(&auth_write.data, &p_ble_evt->evt.gatts_evt.params.authorize_request.request.write.data,
auth_write.dlen);
 }
 break;

[..]

/* authorization complete */
ble_gatts_rw_authorize_reply_params_t auth_reply;

Nordic Semiconductor Page 70 of 79

auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
auth_reply.params.write.update = 1;
/* obtain the data */
auth_reply.params.write.offset = auth_write.offset;
auth_reply.params.write.len = auth_write.dlen;
auth_reply.params.write.p_data = auth_write.data;

sd_ble_gatts_rw_authorize_reply(auth_write.conn_handle, &auth_reply);

New functionality

Configurable bandwidth

The connections can now be configured to have low, medium or high bandwidth. This can be specified for both TX and RX independently to allow for asymmetric bandwidth. This is an optional feature and if the
application chooses not to use it the SoftDevice will instead configure the connections with defaults. The default configuration for connections as a central is (both for TX and RX), and for BLE_CONN_BW_MID
connections as a peripheral it is (both for TX and RX). BLE_CONN_BW_HIGH

When using the configurable bandwidth option the application should have specified beforehand, at BLE stack initialization time, a set of connection bandwidth configurations that includes the ones that it intends
to use through this option. Once a bandwidth configuration for a particular role is chosen through the SV call, all connections of that role established from that time on will use the chosen sd_ble_opt_set()
configuration until a new one is set.

Additional information about this topic can be found in the SoftDevice Specification at .http://infocenter.nordicsemi.com/

The following table shows an approximate comparison of connections and bandwidth configuration for previous SoftDevices as well as the the s13x v2.0.1 configured as shown in the example below.

 connections as a peripheral connections as a central

number RX / TX bandwith number RX / TX bandwith

s110 v8.0 1 HIGH / HIGH 0 -

s120 v2.1 (peripheral mode) 1 HIGH / HIGH 0 -

s120 v2.1 (central mode) 0 - 8 LOW / LOW

s130 v1.0 1 MID / MID 3 LOW / LOW

s13x v2.0.1 (default) 0 HIGH / HIGH 0 MID / MID

http://infocenter.nordicsemi.com/

Nordic Semiconductor Page 71 of 79

s13x v2.0.1 (example configuration below) 1 MID / MID 1 HIGH / MID

/* Example for one medium-bandwidth RX and TX connection as a peripheral and high-bandwidth RX, medium-bandwidth
TX connection as a central. */
ble_conn_bw_counts_t conn_bw_counts = {
 .tx_counts = {.high_count = 0, .mid_count = 2, .low_count = 0},
 .rx_counts = {.high_count = 1, .mid_count = 1, .low_count = 0}
};

ble_enable_params_t enable_params = {0};
enable_params.common_enable_params.p_conn_bw_counts = &conn_bw_counts;
enable_params.gap_enable_params.central_conn_count = 1;
enable_params.gap_enable_params.periph_conn_count = 1;

sd_ble_enable(&enable_params, ...);

ble_opt_t ble_opt;

/* Configure bandwidth and connect as a peripheral */
ble_common_opt_conn_bw_t conn_bw = { .role = BLE_GAP_ROLE_PERIPH, .conn_bw = { .conn_bw_rx = BLE_CONN_BW_MID, .
conn_bw_tx = BLE_CONN_BW_MID } };
ble_opt.common_opt.conn_bw = conn_bw;
sd_ble_opt_set(BLE_COMMON_OPT_CONN_BW, &ble_opt);
sd_ble_gap_adv_start(...);

/* Connection established with the configured bandwidth */

/* Configure bandwidth and connect as a central */
ble_common_opt_conn_bw_t conn_bw = { .role = BLE_GAP_ROLE_CENTRAL, .conn_bw = { .conn_bw_rx = BLE_CONN_BW_HIGH, .
conn_bw_tx = BLE_CONN_BW_MID } };
ble_opt.common_opt.conn_bw = conn_bw;

Nordic Semiconductor Page 72 of 79

sd_ble_opt_set(BLE_COMMON_OPT_CONN_BW, &ble_opt);
sd_ble_gap_connect(...);

/* Connection established with the configured bandwidth */

Block encryption

The blocking block encryption SV call depends on the hardware encryption block and therefore will require to wait for it to complete before it returns to the application. sd_ecb_block_encrypt() If the user
 sleep while the ECB is running instead of entering a busy loop.now sets the SEVONPEND bit in the SCR to 1 before calling this function, the SoftDevice will

A second SV call has also been introduced to perform multiple block encrypt operations in a single SV call to avoid the context switch overhead when more than one block of data needs to be encrypted.

uint32_t sd_ecb_blocks_encrypt(uint8_t block_count, nrf_ecb_hal_data_block_t * p_data_blocks);

sd_ecb_blocks_encrypt() example usage

/* global variable storing the authorization data */

nrf_ecb_hal_data_block_t blocks[ECB_BLOCK_COUNT];

/* intialize data blocks */
for(i = 0; i < ECB_BLOCK_COUNT; i++)
{
 blocks[i].p_key = &app_keys[i];
 blocks[i].p_cleartext = &app_cleartext[i];
 blocks[i].p_ciphertext = &app_dest[i];
}

sd_ecb_blocks_encrypt(ECB_BLOCK_COUNT, blocks);

Nordic Semiconductor Page 73 of 79

PA/LNA support

A new BLE option, , and its corresponding option structure, , have been added to provide support for power amplifiers and low noise amplifiers. The BLE_COMMON_OPT_PA_LNA ble_common_opt_pa_lna_t
application is responsible for correctly initializing the option parameter structure with the required fields that map to the hardware design:

PA and LNA pins and active level
Set and Clear PPI channel IDs
GPIOTE channel ID

PA/LNA option usage

/* PA/LNA configuration */
ble_opt_t pa_lna_opt = {
 .common_opt = {
 .pa_lna = {
 .pa_cfg = {
 .enable = 1,
 .active_high = 1,
 .gpio_pin = APP_PA_PIN /* GPIO connected to the PA control pin */
 },
 .lna_cfg = {
 .enable = 1,
 .active_high = 1,
 .gpio_pin = APP_LNA_PIN /* GPIO connected to the LNA control pin */
 },
 .ppi_ch_id_set = APP_AMP_PPI_CH_ID_SET, /* PPI channel the app gives the SD to set the pins */
 .ppi_ch_id_clr = APP_AMP_PPI_CH_ID_CLR, /* PPI channel the app gives the SD to clear the pins */
 .gpiote_ch_id = APP_AMP_GPIOTE_CH_ID /* GPIOTE channel the app gives the SD to control the pins */
 }
 }
};

sd_ble_opt_set(BLE_COMMON_OPT_PA_LNA, &pa_lna_opt);

Nordic Semiconductor Page 74 of 79

LE Secure Connections

Version 4.2 of the Bluetooth Specification introduced a new mode of operation for the Security Manager Protocol, which enables the use of Public Key Cryptography for the generation of security keys. This
means that applications can now select the mode of operation of the Security Manager when performing a pairing or bonding procedure:

Legacy pairing: Set the bit in to . lesc ble_gap_sec_params_t 0
LE Secure Connections: Set the bit in to .lesc ble_gap_sec_params_t 1

Please note that, in order for LE Secure Connections to be used, the peer will need to support it. If not, legacy pairing will be used by default.

The SoftDevice implements the Security Manager Protocol and cryptographic toolbox functionality required to enable LE Secure Connections, but it does include the Elliptic Curve Cryptography (ECC) not
methods required to generate public keys and shared secrets. This means that applications must include their own implementation of ECC. The SoftDevice never requires knowledge of the application's private
key, since it delegates the calculation of the shared secret (DHKey) to the application itself:

ble_gap_sec_keys_t::p_pk (only) is provided by the application and represents the P-256 public key (PK) that matches the local private key (SK). The key is provided as a part of the own own own bl

 structure when calling .e_gap_sec_keyset_t sd_ble_gap_sec_params_reply()
 BLE_GAP_EVT_LESC_DHKEY_REQUEST is a new event requesting the application to calculate the shared secret, which is the result of P256(SK , PK). The event structure contains the peer's own peer

public key (PKpeer) so that the application can start the calculation of the DHKey. Once the application has completed the calculation it must communicate the result to the SoftDevice by using the new sd

 SV call._ble_gap_lesc_dhkey_reply()

Additional API changes introduced by LE Secure Connections:

ble_gap_evt_passkey_display_t now contains an additional field, , used for the new Numeric Comparison pairing algorithmmatch_request
sd_ble_gap_auth_key_reply() now accepts coupled with a pointer to indicate a match in the new Numeric Comparison pairing algorithmBLE_GAP_AUTH_KEY_TYPE_PASSKEY NULL p_key
sd_ble_gap_lesc_oob_data_get() and have been introduced to support the new LE Secure Connections OOB pairing method, which is substantially sd_ble_gap_lesc_oob_data_set()
different from the Legacy OOB version

Additional details can be found in the API documentation and the Message Sequence Charts (MSCs) included with the SoftDevice.

Passkey entry keypress notifications

During pairing procedures using the Passkey Entry pairing algorithm (both in Legacy and LE Secure Connections modes) it is now possible to provide feedback to the peer regarding the keypresses being input
by the user. The actual value of the keypresses is never sent over the air, but the notifications can be sent to provide visual feedback of the keys being pressed.

To enable the application to send keypress notifications to the peer, the following SV call has been introduced:

sd_ble_gap_keypress_notify(uint16_t conn_handle, uint8_t kp_not)

Where kp_not maps to any of the values present in the enumeration. BLE_GAP_KP_NOT_TYPES

Nordic Semiconductor Page 75 of 79

Sending keypress notifications

/* Pairing procedure using the Passkey Entry algorithm in progress, local device inputs passkey */

/* User starts entering the passkey */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_START);
/* User inputs digits */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN);
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN);
/* User deletes a digit */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT);
/* User clears the input completely */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR);
/* User ends the input procedure */
sd_ble_gap_keypress_notify(conn_handle, BLE_GAP_KP_NOT_TYPE_PASSKEY_END);

Please note that can return if the application calls it too often and the previous keypress notification has not made it over the air to the peer yet. In that sd_ble_gap_keypress_notify() NRF_ERROR_BUSY
case the application should queue the keypresses internally and retry at a later time.

A new event has also been added to allow the application to receive keypress notifications from the peer:

BLE_GAP_EVT_KEY_PRESSED and its corresponding ble_gap_evt_key_pressed_t

Receiving keypress notifications

/* Pairing procedure using the Passkey Entry algorithm in progress, peer device inputs passkey */

/* handle the event */
case BLE_GAP_EVT_KEY_PRESSED:
 switch(p_ble_evt->evt.gap_evt.params.key_pressed.kp_not)
 {
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_START:

Nordic Semiconductor Page 76 of 79

 /* Remote user has started entering the passkey */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN:
 /* Remote user has input a digits */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT:
 /* Remote user has deleted a digit */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR:
 /* Remote user has cleared the input completely */
 break;
 case BLE_GAP_KP_NOT_TYPE_PASSKEY_END:
 /* Remote user has ended the input procedure */
 break;
 }

Security Mode 1 Level 4

A new security level has been introduced along with support for LE Secure Connections. Security levels are used in GAP and GATT Server to define the connection's security level and the access requirements
for the peer to read and write attributes in the local Attribute Table. The list of supported security levels is now:

Security Mode 0, Level 0: No access allowed regardless of the connection's security level
Security Mode 1, Level 1: No encryption. The peer can read and write the attribute without restrictions
Security Mode 1, Level 2: Encryption without MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE Secure Connections) with or without MITM protection
Security Mode 1, Level 3: Encryption with MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE Secure Connections) with MITM protection
Security Mode 1, Level 4: LESC Encryption with MITM protection. Access to the attribute requires an encrypted connection (LE Secure Connections only) with MITM protection

To honour the new security level (Security Mode 1, Level 4) encryption must be enabled with an LTK that has been generated during a pairing or bonding procedure using LE Secure Connections with MITM
protection (Numeric Comparison, Passkey Entry or OOB). This is the highest security level available when defining the access requirements (permissions) of attributes in the local Attribute Table.

A new macro has been made available to set to the new security level:ble_gap_conn_sec_mode_t

BLE_GAP_CONN_SEC_MODE_SET_LESC_ENC_WITH_MITM

An additional Advertising Data type has been added to ble_gap.h

Nordic Semiconductor Page 77 of 79

BLE_GAP_AD_TYPE_URI

GATT Client attribute info discovery

A new SV call allows applications to obtain basic attribute information from the peer's Attribute Table:

uint32_t sd_ble_gattc_attr_info_discover(uint16_t conn_handle, ble_gattc_handle_range_t const * p_handle_range);

the matching event identifier and structure are also part of this new feature:

BLE_GATTC_EVT_ATTR_INFO_DISC_RSP
ble_gattc_attr_info_t
ble_gattc_evt_attr_info_disc_rsp_t

This is the only GATT Client function that allows the application to retrieve full 128-bit UUIDs that do need to be part of the list populated with . An example of 128-bit UUID retrieval not sd_ble_vs_uuid_add()
is shown below.

128-bit UUID retrieval using sd_ble_gatt_attr_info_discover()

ble_gattc_handle_range_t handle_range;

/* list all attributes on the peer's Attribute Table */
handle_range.start_handle = 0x0001;
handle_range.end_handle = 0xFFFF;
sd_ble_gattc_attr_info_discover(conn_handle, &handle_range);

[..]

/* handle the event */
case BLE_GATTC_EVT_ATTR_INFO_DISC_RSP:
 /* check if we have 128-bit UUIDs */
 if(p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.format == BLE_GATTC_ATTR_INFO_FORMAT_128BIT)
 {
 uint16_t attr_handle;
 ble_uuid128_t uuid128;

Nordic Semiconductor Page 78 of 79

 /* Obtain the attribute handle and the full 128-bit UUID */
 attr_handle= p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.attr_info[0].handle;
 memcpy(&uuid128, &p_ble_evt->evt.gattc_evt.params.attr_info_disc_rsp.attr_info[0].info.uuid128.
uuid128, sizeof(uuid128));
 }
 break;

GATT Server first user attribute handle retrieval

When using the Service Changed characteristic to indicate to the peer that the local Attribute Table structure has changed, it is often useful to find out at which handle the application-controlled region of the
Attribute Table begins. For that specific purpose a new SV call has been introduced:

uint32_t sd_ble_gatts_initial_user_handle_get(uint16_t *p_handle);

This allows the application to communicate to the peer the exact range of the attributes that require rediscovery.

Obtaining the first user handle to indicate a Service Changed

uint16_t first_attr_handle;

sd_ble_gatts_initial_user_handle_get(&first_attr_handle);
sd_ble_gatts_service_changed(conn_handle, first_attr_handle, last_affected_handle);

GATT Server local attribute metadata retrieval

The GATT Server module has always allowed applications to retrieve the value of any attribute present in the local Attribute Table by means of the SV call. Now in addition sd_ble_gatts_value_get()

applications can also retrieve the UUID and metadata of any local attribute using the new function:

uint32_t sd_ble_gatts_attr_get(uint16_t handle, ble_uuid_t * p_uuid, ble_gatts_attr_md_t * p_md);

This can be useful in several scenarios, one of which is calculating or verifying the structure of the local Attribute Table regardless of the current attribute values, focusing instead only in the layout itself

Nordic Semiconductor Page 79 of 79

Obtaining the UUID and metadata of all local attributes

uint16_t attr_handle;
ble_uuid_t uuid;
ble_gatts_attr_md_t attr_md;

/* start at the first valid user attribute handle */
sd_ble_gatts_initial_user_handle_get(&attr_handle);

/* traverse the Attribute Table obtaining the UUID and metadata for each attribute */
while(sd_ble_gatts_attr_get(attr_handle, &uuid, &attr_md) == NRF_SUCCESS)
{
 /* use the uuid and attr_md here */
 attr_handle++;
}

GATT Server user memory layout for system attributes

The data format used by the GATT Server to store system attribute data is now fully documented in the API documentation for applications that need to parse it. The data format is used by the following 2
functions:

sd_ble_gatts_sys_attr_set()
sd_ble_gatts_sys_attr_get()

The format documentation applies to the data pointed to by the pointer in both of the functions above.p_sys_attr_data

	s13x_nrf5x_7.2.0 migration document

