/** * Copyright (c) 2018 - 2020, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(NRF_CRYPTO) #if NRF_MODULE_ENABLED(NRF_CRYPTO_BACKEND_CC310) #if NRF_MODULE_ENABLED(NRF_CRYPTO_BACKEND_CC310_RNG) #include "nrf_crypto_error.h" #include "nrf_log.h" #include "cc310_backend_mutex.h" #include "cc310_backend_rng.h" #include "crys_rnd.h" #include "crys_rnd_error.h" #include "cc310_backend_shared.h" static ret_code_t result_get(CRYSError_t err_code) { ret_code_t ret_val; switch (err_code) { case CRYS_OK: ret_val = NRF_SUCCESS; break; case CRYS_RND_ILLEGAL_PARAMETER_ERROR: ret_val = NRF_ERROR_CRYPTO_INVALID_PARAM; break; case CRYS_RND_INIT_FAILED: case CRYS_RND_STARTUP_FAILED: case CRYS_RND_INSTANTIATION_ERROR: ret_val = NRF_ERROR_CRYPTO_RNG_INIT_FAILED; break; case CRYS_RND_IS_NOT_SUPPORTED: case CRYS_RND_CAN_NOT_GENERATE_RAND_IN_RANGE: case CRYS_RND_TRNG_KAT_NOT_SUPPORTED_ERROR: case CRYS_RND_SRAM_NOT_SUPPORTED_ERROR: case CRYS_RND_OPERATION_IS_NOT_SUPPORTED_ERROR: ret_val = NRF_ERROR_CRYPTO_FEATURE_UNAVAILABLE; break; case CRYS_RND_DATA_OUT_POINTER_INVALID_ERROR: case CRYS_RND_VECTOR_OUT_PTR_ERROR: ret_val = NRF_ERROR_CRYPTO_OUTPUT_NULL; break; case CRYS_RND_ADDITIONAL_INPUT_BUFFER_NULL: case CRYS_RND_WORK_BUFFER_PTR_INVALID_ERROR: case CRYS_RND_ILLEGAL_DATA_PTR_ERROR: ret_val = NRF_ERROR_CRYPTO_INPUT_NULL; break; case CRYS_RND_DATA_SIZE_OVERFLOW_ERROR: case CRYS_RND_ADDITIONAL_INPUT_SIZE_ERROR: case CRYS_RND_ILLEGAL_DATA_SIZE_ERROR: case CRYS_RND_MAX_VECTOR_IS_TOO_SMALL_ERROR: ret_val = NRF_ERROR_CRYPTO_INPUT_LENGTH; break; case CRYS_RND_ILLEGAL_AES_KEY_SIZE_ERROR: case CRYS_RND_VECTOR_OUT_SIZE_ERROR: case CRYS_RND_VECTOR_SIZE_ERROR: ret_val = NRF_ERROR_CRYPTO_OUTPUT_LENGTH; break; case CRYS_RND_CONTEXT_PTR_INVALID_ERROR: case CRYS_RND_STATE_PTR_INVALID_ERROR: ret_val = NRF_ERROR_CRYPTO_CONTEXT_NULL; break; case CRYS_RND_INSTANTIATION_NOT_DONE_ERROR: ret_val = NRF_ERROR_CRYPTO_CONTEXT_NOT_INITIALIZED; break; case CRYS_RND_RESEED_COUNTER_OVERFLOW_ERROR: ret_val = NRF_ERROR_CRYPTO_RNG_RESEED_REQUIRED; break; case CRYS_RND_CPRNG_TEST_FAIL_ERROR: case CRYS_RND_TRNG_LOSS_SAMPLES_ERROR: case CRYS_RND_TRNG_TIME_EXCEED_ERROR: case CRYS_RND_TRNG_LOSS_SAMPLES_AND_TIME_EXCEED_ERROR: case CRYS_RND_IS_KAT_MODE_ERROR: case CRYS_RND_STATE_VALIDATION_TAG_ERROR: case CRYS_RND_GEN_VECTOR_FUNC_ERROR: case CRYS_RND_TRNG_ERRORS_ERROR: case CRYS_RND_KAT_DATA_PARAMS_ERROR: case CRYS_RND_AES_ERROR: default: ret_val = NRF_ERROR_CRYPTO_INTERNAL; break; } return ret_val; } ret_code_t nrf_crypto_rng_backend_init(void * const p_context, void * const p_temp_buffer) { bool mutex_locked; CRYSError_t err_code; ret_code_t ret_val; CRYS_RND_WorkBuff_t * p_work_buffer = (CRYS_RND_WorkBuff_t *)p_temp_buffer; nrf_crypto_backend_rng_context_t * p_ctx = (nrf_crypto_backend_rng_context_t *)p_context; // Save time by not reinitializing an already valid CC310 RNG context. // (Useful for example in case the context was stored in retained memory during system OFF.) if (p_ctx->header.init_value == NRF_CRYPTO_RNG_CONTEXT_INIT_MAGIC_VALUE) { return NRF_SUCCESS; } mutex_locked = cc310_backend_mutex_trylock(); VERIFY_TRUE(mutex_locked, NRF_ERROR_CRYPTO_BUSY); err_code = CRYS_RndInit(&p_ctx->crys_rnd_state, p_work_buffer); ret_val = result_get(err_code); cc310_backend_mutex_unlock(); return ret_val; } ret_code_t nrf_crypto_rng_backend_uninit(void * const p_context) { bool mutex_locked; CRYSError_t err_code; ret_code_t ret_val; CRYS_RND_State_t * p_crys_rnd_state = &((nrf_crypto_backend_rng_context_t *)p_context)->crys_rnd_state; mutex_locked = cc310_backend_mutex_trylock(); VERIFY_TRUE(mutex_locked, NRF_ERROR_CRYPTO_BUSY); err_code = CRYS_RND_UnInstantiation(p_crys_rnd_state); ret_val = result_get(err_code); cc310_backend_mutex_unlock(); return ret_val; } ret_code_t nrf_crypto_rng_backend_vector_generate(void * const p_context, uint8_t * const p_target, size_t size, bool use_mutex) { bool mutex_locked; CRYSError_t err_code; ret_code_t ret_val; CRYS_RND_State_t * p_crys_rnd_state = &((nrf_crypto_backend_rng_context_t *)p_context)->crys_rnd_state; if (use_mutex) { mutex_locked = cc310_backend_mutex_trylock(); VERIFY_TRUE(mutex_locked, NRF_ERROR_CRYPTO_BUSY); } err_code = CRYS_RND_GenerateVector(p_crys_rnd_state, size, p_target); ret_val = result_get(err_code); if (use_mutex) { cc310_backend_mutex_unlock(); } return ret_val; } ret_code_t nrf_crypto_rng_backend_reseed(void * const p_context, void * p_temp_buffer, uint8_t * p_input_data, size_t size) { bool mutex_locked; CRYSError_t err_code; ret_code_t ret_val = NRF_SUCCESS; CRYS_RND_WorkBuff_t * p_work_buffer = (CRYS_RND_WorkBuff_t *)p_temp_buffer; CRYS_RND_State_t * p_crys_rnd_state = &((nrf_crypto_backend_rng_context_t *)p_context)->crys_rnd_state; VERIFY_TRUE(size <= CRYS_RND_ADDITINAL_INPUT_MAX_SIZE_WORDS, NRF_ERROR_CRYPTO_INPUT_LENGTH); VERIFY_TRUE((size & 0x3) == 0, NRF_ERROR_CRYPTO_INTERNAL); mutex_locked = cc310_backend_mutex_trylock(); VERIFY_TRUE(mutex_locked, NRF_ERROR_CRYPTO_BUSY); if (size > 0) { err_code = CRYS_RND_AddAdditionalInput(p_crys_rnd_state, p_input_data, size); ret_val = result_get(err_code); if (ret_val != NRF_SUCCESS) { goto exit; } } err_code = CRYS_RND_Reseeding(p_crys_rnd_state, p_work_buffer); ret_val = result_get(err_code); exit: cc310_backend_mutex_unlock(); return ret_val; } #endif // NRF_MODULE_ENABLED(NRF_CRYPTO_BACKEND_CC310_RNG) #endif // NRF_MODULE_ENABLED(NRF_CRYPTO_BACKEND_CC310) #endif // NRF_MODULE_ENABLED(NRF_CRYPTO)