<_.fcp.AnimationOnByDefault.true...AnimationOnByDefault />
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<_.fcp.AnimationOnByDefault.false...style>
<_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'>
<_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' />
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.04cnp8d1wco52n13tx6101jiogz1' name='df_data.csv' table='[df_data#csv]' type='table'>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.04cnp8d1wco52n13tx6101jiogz1' name='df_data.csv' table='[df_data#csv]' type='table'>
0
[df_data.csv]
Count
true
"UTF-8"
"ko"
"₩"
""
""
","
"true"
"ko_KR"
""
timestamp
135
[timestamp]
[df_data.csv]
timestamp
0
datetime
Year
true
hum
5
[hum]
[df_data.csv]
hum
1
real
Sum
true
temp
5
[temp]
[df_data.csv]
temp
2
real
Sum
true
door
5
[door]
[df_data.csv]
door
3
real
Sum
true
motion
5
[motion]
[df_data.csv]
motion
4
real
Sum
true
illum
5
[illum]
[df_data.csv]
illum
5
real
Sum
true
label
129
[label]
[df_data.csv]
label
6
string
Count
1
1
1073741823
true
<_.fcp.ObjectModelTableType.true...column caption='df_data.csv' datatype='table' name='[__tableau_internal_object_id__].[df_data.csv_F3A2D53D34D24189B1B52A9255FBC83E]' role='measure' type='quantitative' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:hum:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:illum:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:temp:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:motion:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:door:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:label:qk]"
#2021-10-22 09:03:00#
#2021-12-01 16:54:00#
[federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:timestamp:qk]
([federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names] * [federated.1i4mltc0odypnu137y9yy0p8plgv].[Multiple Values])
([federated.1i4mltc0odypnu137y9yy0p8plgv].[yr:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[qr:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[mn:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[dy:timestamp:ok] / [federated.1i4mltc0odypnu137y9yy0p8plgv].[hr:timestamp:ok]))))
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:hum:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:illum:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[avg:temp:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:motion:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:door:qk]"
"[federated.1i4mltc0odypnu137y9yy0p8plgv].[sum:label:qk]"
#2021-08-16 09:03:00#
#2021-09-19 16:54:00#
[federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:timestamp:qk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[포함(년(Timestamp),분(Timestamp),분기(Timestamp),시간(Timestamp),월(Timestamp),일(Timestamp))]
([federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names] * [federated.1i4mltc0odypnu137y9yy0p8plgv].[Multiple Values])
([federated.1i4mltc0odypnu137y9yy0p8plgv].[yr:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[qr:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[mn:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[dy:timestamp:ok] / ([federated.1i4mltc0odypnu137y9yy0p8plgv].[hr:timestamp:ok] / [federated.1i4mltc0odypnu137y9yy0p8plgv].[mi:timestamp:ok])))))
[federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:Calculation_839358440279990272:nk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:label:nk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:timestamp:qk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[yr:timestamp:ok]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[:Measure Names]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:Calculation_839358440279990272:nk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:label:nk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[none:timestamp:qk]
[federated.1i4mltc0odypnu137y9yy0p8plgv].[yr:timestamp:ok]
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAetklEQVR4nO3daZMcx3ng8X+dfR/TPRfmxkGChyjCJC0qrA3H7mp3Y9+sd/1iv48+kSIc
YTskS5bXlmQdlEgcc2Lu6Z6+77O6rtwXPRgARAMkoEH3WJ2/NySmJrOeya6nKysrK0sRQggk
aUqpkw5Akibp2iWA4ziTDkGaItcuAdrt9qRDkKaIPukApOlUyh6Tr7ZIL66yspCaWBwyAaSJ
CMeTPPh/v+Zv1hZ4uHXEXFzB8lSEL1heXiSbyXJjZZVK7gy7cc79nM5/+8H7FCotbq/OcXZe
xDBN0ALEDJ9qy2J9Yw1De71OjUwAaSKi8RkS8QTxoM9JJs9O9Qxcj9R8lPv3+5yclXn3O9+l
dLzP5x8uo2izZPYf8Yt//gWf/fV/5awfwMtnCBoqpuZxYzFJ1TX5/O7Sa8UhE0CamGg0CopO
NBIiZq5g+i7pxSilRg9PiXFrfRnqOYKxBM5ZgZzwuX3nJroZYm1uBVv1MLEpnh9zWtD49G7s
tWNQrtt9gFqtRio1uT6h9B/Pwc4O63ffx3iDIR2ZANJUu3bDoJI0TvIaQLpWWtU8R+d13nvv
Nqf7j0mv3qZVzKBG0izENKpdj5XF2SvbnzwDSNeK0EOspCMcH+4Rml2hmD1leWOdbr2E7fpY
/e6V7k8mgHStiEGPDgEWkhECoSiaqpDPl1nduE0imbzyA1Z2gaRrJZfL0nU0wrc2yO7+kdTy
Br1mnmbPJmXYnGXLxFPzzCZCV7I/OQokTTXZBZKmmkwAaarJawDpWuk28mSqgqW4IFPrYuCz
urJAIZuj3Pa498ESbWWW9NVcAsgEkK4P4btkCyVsJ06lk+Vff7uLofj88H/8T27d/ZDo4SF9
q0VLlQkg/RlqFs/IlWp0O01+8P0P+Jv0OgMbFhcX8RyL83aPj2Yi1K5wnzIBpGsjeeMW/+XG
KuVyF5M++/kiCjA/m+Akn2P99h0Uv4p5hVeuchhUmmpyFOga6fV6clGAMZMJcI34vs81OyH/
2ZvyawCbrd99ydxHn+GWDjnJN/no3ofsfvUlHUfl5soKN26vE5h0mNJbM+VnAJPbN5dwfejY
Ct/7YIWzfI1y7ozDkxNKlTrepEOU3qrpTgAhcB0Hx3Xx7AGVeod4IoUqLEqne/z4J79ElT2S
P2vT3QXyB5xUOoh2ljsbq2SKTe6kwvDpD7jx7mdoZhhNAMqkA5XeFjkMeo10Oh1M08Q0zUmH
MjWufReoVht9308I8dJt3W4Xy7Jeq75Wq/XSIciXlXnVtjcp8ypXGcOr2u5N9jOutnuTuhzH
eelym7Va7fongCS9TdqPfvSjH006iGf1+21OH++zf3xCenEF1+7j9Zs8eLRFvetSOT9kaz/L
2toyA8uilD1ie2uP8PwS+c1fcWbFSEd0hDtgZ2uTo/MqVvWcw2yB2MwsvmvTKGXZ3t3GV4Ns
3n+Io5pEggaGJtjZ3OTw5BzXbrP98AFdokQDKsJqcX9zi1rbJnuwyf5JkZXVJQaWReZwh62D
M7xei/2jQ1wtSkATqH6f+w8eUah1qOWOeXxwxtzKKu6gT7OUZXt7E1ePsvvoEbG5BVTfQ9M0
NE1w8PABDT/ATCx00S59QqEQVqvCVw+3KLcsFudSz23LHu+yubmHmZwlGjQufw6C7N4Ddotd
lueHZSzLIhQKsffg9xxmyqTm5zA09bKM7/T5wxd/oGXD3Eziuf2Uz4/Z3n7IeR2WF5IMBgMM
w0ATFr/73R/J5krMLS2hK0/LVM6PeLS7j+VppBLRy/pK57sU6jr0C3z1cAtXjxPUQQy6/PbB
LutLc9z/w5eklpew+32CQZXNX/0aMb9OM/uYna0ttMQNdOHg9lv8ceuQ5bkkmw/vs39aZGlp
HtcecHL8kI4dIxHT+de/+wcS774DlnUdzwA667fWmZ1bxNSGP4nMzLG8OMfsbIpUMo5umJeB
L69uMLuwiNKroEfnMC7KaGaIjbU1Fudn8RGogKIMr2YXlteYS82hdmo4ARPHthEAqsnNm2vM
zs+zdvMuS0vL3FyZAyCUnGN1cZ7ZdBJFVUFVL2NYu3mbxfk5TFNHURVK+RIAgVCciKkSMDWM
xCKf3p2j1BoOrKbSaVwPIrEkd9aXUZRnL8V0Nm5toGsvtk4glmZ9aZ659MwL21KpNEJRCBjP
j204vRY9NUbMfPFq3hegqsoL1/n9TgvLcXEGF23zjLnlDRZmF/nwvbXnN6g6qhAIVNSvVaip
KigKxWL5uZ+v37mNqSj0+h6f/dXnuO0mAOHkLMtzM6DqzKVTlzEoSoB37qzhA4vLa6TnbxAP
Df/eWGqBxVQc1QiSjIcxAgEUQFE1bt6+jeZD8eyIhZWNy/quXwKIAQ8ebKMZGoN+F8cTVM72
Oa9bKL6N5SgYzoAnPfzNh/dBU2k1OxQL52SzeQTgdGts7p+iaxrxmVkiJtQbwxUFdh49wEYn
MhMjFozSbdaHDeL1+OrRYwxdw+k18MwEQX34SdbPDzit9FGEi49ByHMvYvB58NV9VE0nPjNL
PBRgZn64bEe/08KIJOn1ugyaZfZOa8xEh03eaHaYm41RKZQ5Pz8nly/jP/lUhEc+lyOfy2O7
/nPN0ykecVBooynKCwdms91lJmrS7Dx//dPrtKiWCxyc5l5o7kR6jhAW9d7zffhAMEw8kWDQ
buJ+/SPyHXqeTlh//vDxBz1EIIqp2Ay+ViiaTJNORJiZST7380I2Sy6Xw1c89rd3IBi5aLsG
uVyOYqVGuVSgUKpdNI3N2XmOfK7AzqMHuIqG8Idt1G3VyOVyFIolXEwUq4cDCN8jn82Qy+Vo
dLqcZw8pFIf1Xb9RoGoFVVHwUIlGwrTaHRLREK1Oj0AojHAGoAeIRULU63UMTWHgeMSTKUzV
x/YVnIGFiqBvWaCZRIM6XcslkYjTqNcIGBr9gUM0nsSzOihmGNe2CAVN2p0uKBrxWBQUFV1T
qdVqxCJBmu0egVAETTg4QiMeDVOv19AAR6jEokF6fftiP3WS8RiNZotQNI4uHPouxKNharUa
kaBJx3JJxiM0mk1UzUTXVAIBE9PQaTQaeAISyRl0VbkcHXPtPo1WFzMYJhYNo/B05KzfbdO3
fZLJOKqiPDeiJoSP43qYhoEQgnq9TiqVYtDv0rN9kvEoynNlBP1uB08xiIaDw8/mYpsQHo4L
5sXpttVqEQqFMAydbruFp5jEoqHnYvNdm0arS2ImiXZxJq7VauiKwPYUEskY3U6XWDxBs1En
Fg7S7PQwgyF8x0LRg3jOgJlknFqtAZpBQBNYtkssMUO33SQSCtDu9gmEwvi2hRoIEzQ0+v0e
vuvgCY2Z9Ay+baMYBs16/el9AM/zsG17nMf6SAKFZCp9+W/TsjCDYWaD4YufDP8rhEDTNGKJ
BE+XRFUxVfAcFVVVSaWjT+sZfoZomkYkliDypJA5/EbquDaKqpN6Zt9PaJqGEQgzG3gSQ+iZ
bTqJROLy34FA6LKMqhuk0k/qMzCeqS8QjvKkunR6eMbo9XrDbpqikpx5fihY04YHm26GmJ0N
jdwWisQIRV78OYCiqJjPLJ75ZFsgFCEQGlVGIRR5frHZJ9sURcM0nv5cVdWL7qVCJJYYWUbV
TVIp84Vt8WfaLplMXv7ceO4zH/5RzaaLouqkZ58ujPXkE7Y07eJvuWiAyLCs4zhomk48/nQ/
6sUws6ZpT88A1yUBDMNA16f7/pw0PteuCyRJ4zSRi+BWKcNvf/8F9U6XP/7233mwc4hMQ2kS
JpIAp+c5TE1HaZ8Tu/UZUc3B8QWu6+L7/jdXIElXZCKd7XAowszCDc6O9/DDITTbQVMVNEX2
/aXxmsg1gO8OODg4ZvXOuzTzJ+iJRWbj4W8sJ0lXTV4ES1Pt+t0JlqQxGtnpfvCbfyFX7aCE
4nx87xNMu85Rtojvesyt3eLW8vy445Skt2LEGcAHRQEEvZ6FQNBq1iiXG1TrdXzvCkZphGDv
qy9oOh5bX37B3lH2hXktkjQOI84ACrFYjJCjE1c1gqaJ5cPswiyK75FOJV8scsmn1ShxdNxi
fSWGGkmTCL/4dFOvUaTb7dOrn6MtfojaOsH1BarwURQFVZU9M2k8RibA0totWoMj9HCSWDhA
/J33me0PAIVg0HixyDMsy2dpKcrP//mX/Pf//bcjfkOwv39Is1lFrSQxwlGE56OAPPClsRt5
DRCMzXDvk0+f/kALEDe+zeo4HR784TFa2KN0uMtZtUNy5evz1hU+/t4PsBoVvGia4sEmxuwK
2og56ZL0to0cBq3VaiTCBvWBymwiMqrcS/TYelTEbp9T6/b58PP/xGL8itaxlqS3YGQCbN7/
I4mISUuJszA3i2938QddcsUahmkwv3KLhZnoqPok6T+UkV0gIQS+7+N7ParNNlazTCQU5J3l
ODVtmV67CjIBpD8DIxNgee0miYhJredQODtFCcaYSaUIBgRJxcQzYqOKfWuV/AnHZwUW1m5T
OtlHT8zz8ft3UORFgDRmE5kKIYRP4fwU1e7QjN5FaxyxevsuqvBQVVWOBkljM5Hpl/nTQ/xg
knQyRO4sj+7K2aDSZEzkiAuGwxQqZQLBNZYSFkb8Dprs/kgTIGeDSlNNdralqSYTQJpqMgGk
qXZ5Eey6Lt1ud5KxABAMBgkE5Fu5pPG4vAgWQuB5k38jlrwPII3T5RlAUZSJrsh2XRJQmi5y
GFSaarKvIU01mQDSVJMJIE01mQDSVBuZAP1eh1arje0MF6t1BhatVotWq41zFcuiPKNVyvD7
R3tXWqckfVsjxz1Pdh9RanTp2IJ7f/l9AoMamWINz3GIL6zy7vqNK9m58F1ytT4Rzb0cBpX3
AaRxGrkwVrfTplyp4vgKmgKW1aVaa9NsdwgFru4t5lY9T6laZ/84iy9A13V58EtjNeIMoDK/
eAMRmcO1LQzDoNPtYZgqijAIBIOvqM6nWsry+KDJzbUYZvIGqejLpzWE0qv89Q9WabfbaF9/
r6YkjcHIG2GO1WZv7xA9muLdW2svvPP15QSlQpFQyOBnP/kF//l//R9S4VcvpCVJkzTyGsAI
xvjOx/feoLom93+/i2/2Odt+yNlf/ZBUOPXNxSRpQkaeAUrlEgwc9JCGHpkjHhzxyvKR+hw8
rmK3czQGHu99/AmpiJzZKV1fIxPg6PgIehZGXMc3ZoiHwvQ7TbqNMtWOTUATbHz4GTOhP/WC
VVDInCBCMyzOJuXSiNLYfeMRbFtd2u0epXIFNRBnLp3iw7vLtFpX8E5hz8I3YlRyGXw5JU+a
gJHXAOlUGuIuqqmCanJysE9ydpGZWBgQ6EGNGe0Kpk5rQYSVZX5lAwWB68r7ANJ4TXY69KDK
z365xfzSIh+9/+5rjDZJ0tWQzwNIU032NaSpJhNAmmoyAaSpJhNAmmrXJgGEELju8PkDSRqX
y8F8x3Fot9uTjAWAcDhM8JUzTiXp6lybYdBnw1Dkq2KkMRnbSli+a7P16AG2HufOQpjtgyzv
/cWnZDa/RE8u8d6dVfyLJ8JkAkjjMrZrAEUzSKeSCCEo1Ht8/vknFB/9msDqPUy/iy8U+USY
NHZjO9qE75KYXUZz+nieQ7/fhlASp9fGdjz5gjxpIsb4detzdviY6Owi79xcY/+wyO0P7xHz
SiQXX+epM0m6OtfmIliSJkF2uKWpNnIUqFbK07FcUnNzBA2DQa9FtdEGFOYWbxAyX3/wSPgu
h3vb9NUYtxcibO9nee/j73K+9wg9ucSt1QX5RJg0diPPAI1KkXIhy09/+k8UGl1ajRrVapVS
Icfhae6Nd7W8fhvVG5ApVPjud++Q3foCL3kbt1PB8wW+7yN7ZNI4jVwYq14psrm1gx6KE9BV
NE3BdsBHYWn+TVd58Mnn8qzfvPUnBSxJV2nkwlhzi0t8EJnHtS1UTafVbuO4FooQuOJVHRWP
ciHD3n6NG/NBZpZvXy6M5bk2tUqJRtfl3fVZHj465P3v/iXZvUcYM8toqoIiO0HSmI0cBXLt
PrlcAS0Y5cbC3GsMUXpkTzMEw0F+/pOf88O//b/MvWJlOEmatJFXs7oZYm3j5htU12bnURZh
tCkfPSZb68oEkK61F84ArtXmiy/+gB+Y4bNPvktAf52R0gGZ0wZ2t0xfqKzffodYUC6NKF1f
I7tA5fMTCM/jtXOcFBrcXErx+KyMoUEkMYfpNKi1He59/jmhb7tonCRdQ6/8ej88OEBVVWx7
wDvvfYcbq+tETR89lOSdhRA169vvSHgueztfUaz2aRTP+M2//4Zab8CDL37D1v4pcvRTmoSR
CRBPzRGPmNz75FMCgSAz88skowFmZ5LMzy/QquapKCmWI99+R4qms35zBddyKTb7fP/7n1Da
/DXBtU8I+D1cXz4RJo3fyIvgQGh4ZAfMOT5Ozn3t1wPc+95f/Wlz9l2HXrcF4RR2p4XmuKgq
qMj+lDRebzAXSHmjg993bQ52TsgXTlm7tc7BcZk7H3xMXJSZubGBqgzrlQ/DSOMkZ4NKU03O
BpWmmkwAaarJBJCmmkwAaarJhbGkqSZHgaSpJrtA0lSTCSBNNZkA0lSTCSBNNZkA0lSTCSBN
tYknwPHjLfaPz5FjsdIkTDgBHCxHZ31lYbJhSFPrLSSAS6PexnVsHNf7ht8VDLpNvnywjSef
CJMmYGQC/PIX/0TP8fnNv/2MUuPpg7/VSgXhudQbzZdU51HIZjg8OOAf//4f6TrfcDDbNp6m
YgYCqIp8QYY0fiMfiUwnopTyWYQZodco8pudHIFIlErmjLsff4rrWswkEyNK2hwfnBOeiVLO
nFJq9UmGXrEsihnl008/u6I/RZJe38iv21ByjuLpMbOzadyBRSQxi6JorKwuEQsHcF2XXq9P
r9f72mK2Nh5xGsU8hq7iyu6MdM2NnAxn2zae66IbOoqi0mrUCcWSCKeHp5iYhobwfIQiCAaC
zzzH62PbHr7nEgiF5Eqf0rUnZ4NKU01ecUpTTSaANNVkAkhTTSaANNUmnACCs4Md8tW2nAsk
TcRkE6BXoqmkqedO8GUGSBMw0QQQdh8zmsA0dZkA0kRMNAGUxAr90y8ZqGE0RU6Gk8ZP3giT
pppcGEuaavIMIE01eR9AmmoTSQDPGZDP5XE8QbNWpt0fTCIMSZpMF6hWztPtduhZDq0+6IrH
xx9/9BpvpJekqzGRM0A8nsCyYTVlklx5h0TElG+JlCZiIglwsPOIaqNBQ8So7v2OugWGKp8J
lsZPjgJJU01+3UpTTSaANNVGJoDve/i+z+t3jgRC2BTzNZyBxcBx//QIJektGpkAX/zqX/ji
d7+n2u6/ZnU+pVyecjnHj3/8d1jftDCcJE3YyIWx5ldusbEY5/7RCY+bddRgmKDXp297pJMz
lB2f7/3FR7y45JXFzuYRkXSUXjlHttohsZx863+EJL2pkWeASuGML7eOSSci6IaBggBFwzQ0
UEw+uvedEQc/gEcgModVqxJJJAkYoy8xGuUcv/vjQ3C7/Prffsnvv9p6g+6WJP3pRi+MNbBA
0TAMHce2UXUdRfi4Phi6hqKqL1n0SuD7AiEEqqa9cmGs46MjNmbgwFtDaxyycvNdVOGhqqq8
FyCNzcgukBkIPvP/gYv/09C+sToF9VvMZ2jVSmQyGaKxO1SPHmKYJhuqgqqMDEeS3pqJ3Aiz
rR49yyYQCoNnoxpBAoY8+KXxk3eCpakmO9vSVJMJIE21iS+MdbjzkNN8VS6MJU3EZNcF6uSx
Qqv0awW5LpA0EZM9A/gummmiaoq8ESZNxGQXxoov4xW3IZhElQtjSRNwOQwqhOA6jIgqivLM
K5ck6e26vPvkui6dTmeSsQDDhbECl3efJentujY3woQQeJ6cCySN17Waf6Bp3zzbSJKu0rVJ
ANnvlyZB9jWkqSYTQJpqMgGkqTaZBBCC4+2HtB2fvUdfcZQtyrlA0kRMJAGsdoVKqUKnkcNL
3sZpV/B8cbEUi0wFaXwmkACC7a0d2t0mxWJl/LuXpGeMvBHm2DaGaQLguQ6KZjy3dPmz258n
GFhtzs/bLMxHUMwI4cDo9SN61QJefJ7c7n2MmRVursy/8iF6SXobRp4B9g/2GfR7dLp96rlT
Co02rufT73WwbJf9g/2XVCdo1lsg+vzD3/8UR7z8kA6nF4kZKnc/+oRb8uCXJuSlN8IONr/g
4XGNz++9R7N1SvkcDh/dJ7B4h5sLsZeU6rH51T6BpEnz/JSMXBhLuuZGngFUVWXgKawuJvF8
hW6ngxkIsbC8xs3VJVRVpVmrY/ebNPvPrn8oiKdvoFp9FjZuEgtemxvNkjTSZJZF6TXZ2j3m
3e98RPXsMcbMMovpuOwGSWM3kWHQvu3zwd1VMnsPaSpp6vlT/IvnEeQwqDROE0kAUxWc5Nu8
uzqDGU1gGjq+D57nyQSQxmoiCXB+nqFVL1Nw4vRPv2SghtHlO8KkCbg2D8RI0iTIr1tpqskE
kKaaTABpqskEkKbatUkAIeTCWNL4Xc5V8H0f27YnGQuAHAqVxuoyAZ6syzNp7XabWOzpZLtO
p0M0Gn3h94QQdLvdkdsGgwGqqmIYL07Ffll9/X4f0zRHLs3ysjKv2vYmZSzLQtd1dP3FOVRX
GcOr2u5N9jOutnuTulzXxXEcQqHQyDKXLa1pGpFIZGTl42RZ1nNnAN/3R54RhBAv3fbEqG2v
qk9RlNcq86ptb1LmOsRwneN+k7qeLLfz0vpG1jZBiqJgderUWhamaaLrOpoiyOQKGLpO9miP
o0zxchvegFypiqGrnB3ucV5uous6hq5RLuVxfJVWJcfWzgFCM9B1Hd/pU6g00BWP3a1HlBq9
YRnDwOrUqLUHKL7D3s42rb47/FZWIXOexzB0zo8fc3BWwDCG9fWaZRpdF6fXZHNzm74rLurT
qZbzDDwFu9tga3sPTxl+wwvXIl+qoSs+e9ubFOudYX2aSqmYwxMqjdI523uHcBG3rsJZNodh
GNSLGfaOsugXMfTbVeodG89qs7m5Rdf2X9p2T+LuNko0ex52t8Hm5jaWp1y0nU7lou0GnRpb
O4/x1Yu4X9Z2ukahkMNHo17MsPP4COWZuIdtZ1AtnPH4JPe07VoXbddvsrm5ddl2Gj7ZXBFD
1zja36PRcy4/o069QKvvI5weW1tP41aFy3mhjKEpHO/vcFaoYZgmuqbRrBbo2tBvlnm0uXP5
OVy7BAAQqk+32bv8t+c49K0BAAsrG/TqZZ5cKtuOj231Ea7D/Npt+o0yAhC+h4eH1XWIJOeY
jwlKteGb723Xx+73AJVb77xDKZd9Yd+e53PrzgblYvkiBpueZQMK8yvrWI3KZQyK4dOu9zCC
UW6tpjjP1YYbfA9f9ei3bXzV5PZqgmK5/TTuwTCGm3fuUM7nLuJ2cYTHoO8SS82TCnlUGtaw
Ote5iAGC8TRBYWE/ebGC5tFp9NDMMLfW5sjlK9/Ydorp0671MEMxbi4nOc8P4xa+i4uH1bUR
WpCNGzHK1S4Ag5e0nfAcHN/DGbjE0wvETYdae/C1thOEE3Podhf3SQz6RdsFotxaTV+2nes+
iVthdWme/Hn+8jNSA4JWtY/jKdy9c4P8RdyO42JZFqCwsn6LVmW42IIQAgyPTt0iEJ1hYyFI
pjD8HK5lAiSSiedWijPDUcKmDopCr1UF1eDJ1Uo0nkBXFRRDp3KeZeXmHRRA0Qzi0TAgwLWo
dV1MbXiwxBMJVAUU3aSczxIMhS9XpUgkEyiAqkIuV+P2rVUAjFCUSGDYY+y36qDolzE8KaOp
gnylSSgw7AsPYxh2K4VrUe0ZrC8lAIglkmiKgqIbVAo5AsEgAlD1APHIsL8qnD6Nno9xEbce
jBANDq9res068fllApp6EUMSBQVdg0K5TvDiUdTn2672XNslk8NYNMWnUG0RModxq7p50Xbg
232adoCVi4egXtZ2ih4gFg5elOnR6gt0VXyt7RQ6jSqppVX0i8/3620XvGi7QDg2jEdRKNQ6
hELDBZMVRbmMW8UlVx5wZ2MegFA0TkBXQdVo1UpouokPKKpKIh4ftiEu+YZFSL9o09GH4GQd
7e6SKQ6IJQ0sy8GsFchkznBQsBsVPIKXmVvKHpHJZFCFS65ao+tpbKwtgt3nYO8AX0uSjiv0
LQfD0MEZkD89IJPJo6oK1WaXUCJy+SzC4c4u2ZKDcKOU6320UJRkWKfbKF7G4DQruMK8jOHx
5g75qoKmpel0+kRmDEDgORb7u/vYIkksZNGzhgmrAYXMAZnMOYqqUmu0CcRmUQB30OVw/xA1
0CAZ8rEGw7j9wfD0ncmcYQudTvEUYbRIzHwEwP72Lrmyh6bN0u70mUsMP9rO19tOPG273Yfb
FOs6mjZDp2sRmzUAD8/ucfD4AF9NETa69G2VWHx4oL6s7Vyrw9HhEWa4Tcx0GNgOuq7hudB7
0nZCo1XMgNEheRH3481d8lVeaLtWJUcmc4aLQr9ZJ5xeBobf5rsPtyk1TFzHpNEaEIzGCetQ
L2bIZM7wFZVurY5vRFEA4bnsbe3S6Ibx3Aj93oDZJROExf8H0bX1cYYJO7YAAAAASUVORK5C
YII=
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nO2d2Y8kyX3fP5FHXV1dfR/T3TOzB2cvk3txuSvZhGyJkiHa1GXJgAEbMPxo
/wGGHwwbfhAMvRh+FGwJMCAZviTDAmxLpiiQoKiDFMUVyV3uNbPTPX0fdVflHRF+qK6ePqp6
Mmu6u2qm8wMMproqvhkRVfnLuH7xC6G11qSkXFOMYRcgJWWYjJQBhGGI67rDLkbKNWKkDCAl
5SJoVvf5+te/zvrOPlL17uE3mw0ArKssWErKVTA+NUfOzuLX9/ju2j1q9TrFYpGtTz9hduU5
pJGjuv0xd26vpC1AytNJcXwcpSWGXWDxxiKlgkVpaoHlG/NU9ra4dftZ6i0PMUqzQGEYEkUR
+Xx+2EVJuSakLUDKtSYdA6RcAxRrn35KcWqW6v4e84sL7OweUCrk0hYg5TogmJicpLG/x/TC
NNW6Tz5rkbcyaQuQcg3QIffurbK0vMTG2gb5fAHHU4RWKx0Ep1xv0i5QyrUm7QKlPPUEXpvV
9W2WbizQqDfRCKYmC+xVnbQFSHn6sWyb0GlzsLfF1/7wq3zjW9/GyI5jGyptAVKefnzXQaPJ
jc/yxhuvky1OEzl1lLDTQXDK9SbtAqVca9IuUMq1YX9nE2WPgd/A1zbLy4upAaRcHyqVMtr2
KK99QjkSzC7OpV2glOuFUhoZtfmrP/9TPDd1h0655ox0C9BqtYZdhJSnnJEbAzRrZcq1DCs3
5lFKDbs4KU8hrXqZcsMnI8LRawHsbI7Q94ZdjJSnGNO0qFWruKI0egawfv8eoRY4jjPsoqQ8
pbiug5Ihjf3N0R4ENxoNSqXSkEuV8jQzci3A46C1TtxyOI6TeKzRbrcTpR9ljed5SCkvNY9R
1oycAbTqFTZ3D/p+rrVifW2NqEfAI611z5tZyZBypdrzev1ufrdd58HmDr3ax343zMHuFnvl
Ws/P+mlCt0W91TsaXi+N1pr7dz+i6QbxNUqyurrWM0iUUopenYDK/g4ff3IP2ePr6VeXenmP
3YP49ddas7O5TitBXfb399Fa8WB1tWd9Tmu0VuwflJFRQLlytmwjZwCmncV3+1tx2NyHzBg7
5xjJaaRUiUMuCsNG+S5J2gbDMCiXK7HTa63Z3Fin1mjE1yiPg4MmGcuMrdnfXKPhBCTp607P
LZDPZTBEfM3e/j4HB/vxBVqyu7fH/fursSXtdhv3YAd7osjWTu+H2gmUot12UKp372DkDGD9
/l0ibfTtyhh2jv3tDTK5XOxrysBjY/0Bbhj/dt5Zv0870iT4/XFdlyDs/TTrhZYhjutSqzdj
a4QWjE/k2T2I8eMfkiuMIfw6NSeMrfGdBtnCBCLBF6CUIoqi2OmFMJmZmqRYHI+tqR7sUml7
7DxYJ5t/9D2gVMTu9iblSpXNjXW88GQL8VQNgpVSOI5DsViMrWm1WhQKBQwj/rNgkMH5qGoc
xyGTyWBZ8ZeERrUug2iOat1sNnv2Ba8SKSVSSsKw86QaJFK067qJBrXdQaBI8KgbtFyjqPF9
nyAIEj0ARrUug2iODGB8PH4zdBEEbot7q5vMzU5xUG/zwvPPEPg+URiQy+XRbpUoqJDPT4GV
A7+FKEyjGptg2BjFBTBMONZJ0VqjlaKQxJdIa3L5HIaIfwMoKZPlkVCj3QrabxAFETkj2WJ9
FERkG1vQ2Hz4ZraEWHwVY/ImnOrUCSHIZDKYZvwxhVKKQqGQqFyjqhmaK0Tot3Ecl52KyXIp
ixMJsqaJ+3//JYZsgmGhZ14lrPwQlAQrh/bqGNPPgVZEze3O+8ee3FoYhJl5An8nfjmyCxhB
GUPH77uGuWUCb/PRCQfV2HmM4jzamkFF5UT5aGsGbI2x8MrD9xo7RN/8NcTYDMbY/In0Uowh
8eFY/UVhGvPG6w+/W2FizN6Bw4eEIQTm8dGxMB7ZghqGkaibdVWaIfoCmWSzNmNZk82qw8uL
oCLIffnXjsYAUaNBIeEYQDsOhQRjADXAGCBpuQbVBI0GuQE02R4a+7V/gNp9D07NBZmhxjQF
1rHqq+oa4SdfPXbRFqqyemQAfm4Jy9s6dhEL8+bbmDOfQZSWMGbuJOpSDpOhGcDY5CyfnZw9
8V7q+nZ5CNPCXHr9zPum42BmMpjHnprm0hvY51zrtDErp4Jc/zaqcp/oB/8dEGQ+98uYK29D
ZmykjWHkvEFTnjyMwjTGi18GIPPWP0Huf0T0yVfxv/ufOr0owya69SUC83g3U6OaO6jaGgQP
133E2Czm4msARBQIOJwOFwJj8hbG9LNHLVEvtBOgTB9ROPlw7WeEwzMArdjc3GR2dpZKvcWN
hbmhFSXlYjHnXsSce5Hs4d86aOHf/x6GeXIdwlz5AsbUbURm7Og9VV1Fle8BICILw+oYjdYa
Vb5HePePQPd33QitWXxnDe3VQKtDYxEY8y8hzMzJxMIYngE0DjbZqbQJwghbaJxoFlOpE4sp
SRdWtNZIKRNplFJIKRNNnSYt1yhrulPPl1ouI4dYeBVOjc00IAGOX2t8pfMPEK3WkUYc/nvU
SM1qtbBPjwEjH3XwEaf9WrQMhmcApp3FiA6oNUNMDfO3QGgDwzCOpuSOv46D1jqxpps+ST81
aR6jrDFN8+jfKJXrQjVmAXP5jZ7ph2YAhYk5Xnt9FiHE4Y0r6K5SH78Zk9yYWmuEEAMNupJq
riKPUdaMarmSaoZmAMdv1FGeJUh5url0Zzi37RDJCNnLrzYlZcicaAFU6PGtb3yDA1fzt3/m
i3znj/8Mx/V550s/g2zVsLXCGJtgLGvhuS0cLyQ/VmJivPfSsww91tfX2dnZ4LV3foKJ/El7
azebZHIZanWHudmpy6tlSkofThiAlBHVWpXsxBK2bbPyzB2KxRzThQyrW1XKlQbjUw5ZGxAW
WknCSPY1gPrOFtv7+7z3F++y/MrbTOQfLq+oyOej99+juLBEVoc4k5NHs0DdWYnjr+PQ3RCT
RNNNn8QRMGkeo6xRp77zUSnXVWlOGICdK/Dq628SaAvLtLFFSLMZMbuwwPKtZ7l5C/zApVJ3
mJ+beaSvfGlhmS9Mz/PG629QHDtpJI1qBS8IMD2PUEYsGiCUwDCMI7eE46/j0B0EJ9F08xhE
k4RR1XTHYte1/qcGwQbP3nnx6K9n77zw8COzs/kgk8sxXorXXbEyWaxMtudnk3M3+LGZBQCi
SJIxBGGPQfFVzAINqknKKGq6db+u9R+qK0TXUjOZkduYlnJNSO+8lGtNagAp15rhbYjx2nz0
8T3sXA7PDXjl1c8Oqygp15jhrQQbBhMzcygZMJHPEEQa89AxK3WGuzrNlTjDjbBmaAYgw4B2
s8ni4jyNlkvBFkSYaK2PtrQl3d6mlMI0zUSarvNU0mnAUdzeN4im6wiX9DsbxboMohmaAWTH
JnjppQkAJicnh1WMlGtOOghOudakBpByrUkNIOVak0aGSyPDpZHh4Oojw3Vp18tslds8/+zN
TmS4KCJ3GPg2aZQvrTVa68TRxPL5fCIDGNUoZ/00/vd/QPDhh4z//V+BUzf640SG045L83/8
DjrsHXTXWl5i7Ms/C0CwvkH4x99KVJdovEjYfPRBiYWf+lvYzz13omxxGXpYlN29faQURKoz
JZdOg168pvHuu7jf+x4Tv/LLGKc+e5xp0KBaQXkuE7/8984mkpLKb/wmEz/3lc6f29sUX/0c
meeejZ+P71PM9nam7OL/6AOCDz4g/8ILJ8oWl6EbwPzcHOs78WP9pwxIws3lcTEKBezFxTPv
a9UNSfIQa3GhZ9p+mI0G9iMi48mDMrKcLHzkiTINrLwgipMzvDw5A0CC8P0pCdBRhLDtM2FB
Luy6PRCG0YnLc/SGQFjnxZsbDJGx0QlXi4+TzgJdB7RG2JnHulH6XffcEzRMEy2PQn0gLqEV
EpaVGkDKaCKMkwZAgmOdYmOmBpDyCLSUCNuChKdhPhIpz3+qWyZEHQMQxiW1APYTbgAqCvjL
d78/7GI83UiFyFx8F0hLdWZa9TjCMFGei/J9tNKIhDNacRCmhQ4ClO+jfD/xOGfog+C1ex9T
rdfxQ4lO3aEvRdNdH5FSnozDyeO5Qysl0eeU0X7+OSq//h9ACMKlG6h33k5khHHqr8cKqGaL
g3/37wGQb71J4Sd/MnYeQzeAZ1/8LDM36mRtkxCVrgNcgkYIgbAsTMSZzx5nHSAyTMQ5ZZz8
pV+EX+q8bjQa2AkX9WLVv1hk/l/886M/t37ndwdfB9BaEQQhpmlhmgZh0DlbNpPJnHCTiHuz
aK1p1OrkxvIYhoXdZxBUKk3ELnBKcnQYYmSznSOlLvi6/aZBh4Ua1BUCOufW/uW3vsl6zeXv
fPlv8p1v/TlO2+edn/4ZVKuGGwQYaObn59EyZHe/hmEKlpdXsMyzRiFDj929fTYefMqbX/wp
Ji9jFiAl5Riq2STY2OiEUh8bw5w6P4TPychwUch+tcz0zC2y2Ry3n3uJ8fE8c8Ucu8dcMra3
NomcGlZxARkJmmHAlHn20OL6zha7B3u8/+4Puf36X2cyP1pPi+uEsB5vwehJwbqxSOsP/h8A
wdoDFv7Nv+4syvVLf/wPOzfGG2++ha8tLMMmZyva7TahmmV6ZgalOyenN+tVsvOLZA6DXpl2
nz7g0m3enl/mnXd+jEz69B8aOgoxCvnLWQm+hJmdx6H4pS8dHZS996v/FqQ8d6bqVOkFt577
zNFfK7ePOS4dO14mOx/Pn8O0rBOHr/VCa406PNgi5ZJ41IrtwNdVYIxwaHvDQCt1bgjPoZtv
u1Hl7r0HvPz6a0eLEscH3En3KHSn/JIySD6XncdFaoRto4Kw7/UGrr+Or73y+psmzp/86bkD
9aEbgFaapdvPkBEQDDE6dNL9AKMY6bifpvtQUOrsnP+g6wBSSlQkO+d8xdAPo/6lX/wFovV1
dBD0TT98A0BTr1aYnpo8iuybrgNcrEYgEIaBaZz9bh5nHUBohZHJxNIOo/7WC3fghTvnph+6
AZSmZilNdc50DS92mjrlGMK2++7cus6kI88nkOjggOpv/TbV3/ptooOYm4lMk+Yf/AG1//rf
Oj4zKUBqAE8k/gcfIHI5jHwe74fvPTK91prSz32F8a98hWhvn2h7+0LKoYPRWwlOytANQIY+
u/uDb2m7jqi2g72ygv3MbZTTjqUx8nmyzz+HdWMR1XYuuYRPDkM3gO3tHfxWDTft/8dGeR5G
Po+Rz6NdL5HWyOcT+8s8zQx9EGwKTbXlskDHXbfyH38T+/Cp5k1N4VWrsa+lhSAolXDq9dga
v1Si3WohksQSSliui9ZEO7sY//RlsCza3/oT/Lt3z9Woeh3X8yAMUePj1H/nd2l97WsABMUi
ludhJHCT6OYhK1UKv/DzuK6LEAKl1NFxS6dfh2GI53lHbueGYfR8bZrm0TSmlBLHcc683++1
YRgEQYDjOGeu350KPv4aQOghR8PSWiGlwrIswjAkdFxyuY6LRavVolgsJriWxnEcxsbGYmva
jkM+l0s0DZq0XJehEZnOyvzpOe5eGmEYR311rdSJ2SDXdRPHBTqeh7Dtc31tujQajSMXhbhc
hWYkI8NFh2tSbhRBwhkLNwzRCTReGKIMI1lkuEHKddGaPu/31fTp9vhhSEh8F/czecSsUxoZ
LgZhGLJT3yai81TzdYDm7OBACIO8nccLXfJ2ASEETuCQMTP4wsM2LTJW5owOwBAmhUxnY0bL
b5I38owVxjAMAzd0sQwL23z0zEbSJ9OoahzHIRNzMWvQPHpptNZ4kUfLb9L2W4QqwIt8vNDF
jzwaXh3pa3zhorSi6TcYz5aYzE8hhKCYKWKZNgW7cPRbZ8wsaIFpGOTsHKZhkrfP34Qz9DHA
ab7+yR/i6Y4VF0WJlm6cSaO1wgkdCpkx3MBBaUXeLhDKkNnMHAfhPpHsveijtaYdthEICnYB
W2doRnUkioJdwIs8lD45HjDorFBHqtNPnrFmKUed+XfLsLoXRgNKS0BgGuaJPKftWapRGbQm
VCEZM4PUCkP0f/JOWzNUovKx6ygyVpZQhgjA7OaNADqt93x2kaY6OQbKmBlK+YdnMBgISrkJ
QGApC2lINL1bf6UlDf/kb5DXBbbdTSIVEkQBUj96BmPKmunUH4hkiNSSvF2gkBmjmC1imxmy
Zpa8nccybeaLi2TH8phZA9MwKGbGafgN6m7tyCCkkjihQyA7D8wg8rFllrqs4oYOUknc6FSL
oDXWsQfc0McAxwnDkCiKyOfzQPL+nFIKx3ES9bVbrRaFQuHcLoBSCo0+uqm75dJaI1WEpmMI
SksE4tAQHhqREIJ2q01hrHB040olMQ0TqfrffKf78x3PWXl043cN8ji1epVc4eTeDD/yaXgn
jaLu1QANoQATMHqXwTQsipmTvQPpS2an5rCMTktriEePH9qtNmPFscNrmliGda7xw+WMAbTW
SC2Puvsj1wKMIv2MQwhx4mliiodfp8nJm0IgTnStLNM68X8vTGGe2x3r9VmYCSkVzt4Ai6Ub
Pa8xSBeo0WhQKia7MUMzJG/nE2kuAyEE1rHf6crXAbSMuH/vE2qNJnfv3qPVrPPp2kafZ2BK
yuVy9S2AMJgoFSnvbFGamuXj1Q1uThdphxorDYty5Zr0lMgrRgYO99a2WFlaYGtzk6mJcbYr
bV5ZEuj0lMgr16SnRF4xVq7IF976PAA3llZOfJY666ZcNUP3BUpJGSapAaRca04YgJYR5YMD
HNdHa0W1XOagXEVpTbNeo1prJJqt0Uqxt7VD22njp9u9UkaQMy3Ag49/xO/9n9+n5bb44IMf
8f3vfpdyyyNq7rLbCNjZWKNSrXL37l3ur65ROdjjweZOT8OIApd6u8U3/+hruOnxLykjyIlB
cBR6PNjeZXHhFtlsltLELDeW80yP5VBqHEfn+eDbf8ns4jKlmQksBAfVJlpKFIucXg9sHuxR
rpTZerBFzfGZLDzZu4dSnj7ORIZ7661uZLgMSzdmiVTHy8QqzrOASenH38G089i2iQAq5QPy
xYkzNz/A5I1bfH5hhbfe+kLP2KEpKcPmTGS45WPR4KZn504ktYDx0uQJxfxC/yhxhmlinPIz
1zLig08+5dmlGT76dJPSRJFWy+OVz74yaB1SUgbmytcBhGkxNTGO77ncWF5mc2eHm9NFvChd
CR6GJl0JvmJUFFKvVbDnb9Cq1XjxmRV2Ky1mbUGUrgRfuSZdCb5iDMvmpZf/GgCzM9MAPDee
HpCRMhzSkWnKtSY1gJRrTWoAKdeaoRtA6DtsbO2mG2JShsLQt0Tu7O5joXAjSNeJU66aobcA
tgl71Rb20EuSch0ZeguwuHybxeXO69RhNOWqGfpzV2tNJGU6BkgZCkNvAdqNKvfuPeDF116D
1BXiyjWpK8SQUUqxeOs2WUMQmakrxFVrrrsrxNC7QEIImo0aMu0DpQyBobcA45MzjE/OAOkg
OOXqGXoLkJIyTFIDSLnWpAaQcq1JDSDlWpMaQMq1JjWAlGvNCQMI2g32qg02NtZRqjMxHwYB
vucxyDkyMgr5+P0PuHvvLo7fe3VOyZBWenBzypA4sQ4QNB0OfJ/a5gaGVtRdn1a5zPzKTUwd
0Q40ImqTK81xa2nhkRf3Ww184JPvfJvi3AqF7Nllh8APqFZrjBXyKKWOXBOAE6/joLVOrOmm
T3JSVNI8Rllz+jsflXId14RK8d7uNm/cWL7wfE7ckYZtUwha6LmVQx8Rzczs9KGPTYSSMDu7
QOdQtkcjw5BcxmR8ch6zj0SpiIODfW7cWEIIgWEYR24Jx1/HQWt9dI24dPMYRJOEUdV0D7Me
5fo3XIdv3L/L55dvXng+JwygMDPDMzMzR38/OrvzGZ9bZHxukTt3XuibJpsr8NKLL2IYoFXH
So6f2Zvk/N6uASTRdPMYRJOUUdR06z7K9dca5GGXPM41kuQzdFcI07LJW529YKknREovIq36
nqT5uKSzQCkjT2fPyOVEF08NIGXkkSptAVKuMVJrogQblpKQGkDKyKO0Qg6yEBWD1ABSRp5I
qaOF2YsmNYCUkUdrjdRPaReoUdnjRx/e5ZIMPOUpoNv9uYxbZOjrAHUn4MZEFieCLFD3PNzD
CruBT+TE9xPSWuN7HkGClUDP9/EFCBFfk7Rco6wJPA9LyjMn+Qy7XMc1Td8H4KDdwjLOL2fS
fIRO4gRzCTQq+2zuN3jhznOEgc/vf/QB4eFCXk5rvISrh1mt8RNosloTCJHo6TJIuUZVk9EQ
CUjSwRhGXSZyeeqee+H5HBlAs9lM5BB2GXRj1GQyGQBc1yWfzye6RlKN53lks9lEy+dXUa6r
0vi+j23bifxnRrUug2iOukDj4+OJMrpIfN8nm80ShiFRFJ2oQKlUin0dpRSGYVAsFmNrDMOg
UCgkdtRKUq5R1jiOQyaTSRx/J5cfwzBE7NM/tYbCWDHxaaGXXf+hjwECt8n3fvgxP/aFN49a
gDQy3NVpBo0M9+u/9xeszJX4+b/R39HxOD/8dJeau83Pvv18onye+shwuzs7BL5LKDVmGhnu
yjWDRoZruSFNN4itc/yIIGTkItAN3QBuPnuHxZVnsC2DMI2M9USRaHFKa8JLcmh7HIa+DgBg
2+nRGE8iUcJ4lkOeY+nJ0A1ARiGu5w27GCkJCaUiTDh2GEWG3gVynSYffnSfVz//JmiNPvzX
JcnUrO6hT6JLqknKMDRaazYPmqzM9Z4ZeZzvTKp4ukgqyg2XCGvkvuehG4AQgqxtIRUYhz9E
d0bm+Os46FP6OHQ3hSchaR7D1Lh+xG/87+/xr/7xT/RNP8j3jIYoijd7tlNp8mfvb/D5V24n
zueyv7OhG4Bp2swvr5CzBJE2jmZloGMcZoIl+u46QBLNILNAScs1TI1hKDT0vU53E3mSfIQQ
HQ9NrWPptH641ztpPpf9nQ3dAHKFIrlC/IWrlGSEUhJGFz/7og67QHHLAIN1Zy6boQ+CUy4X
KZP37+MSxTSsrifzZe3rfRxOGIDfrPH+hx/QdMMLubiMQj5670e8/6P3afeJDBd6bdbWt0Zy
iuxpQGmNijlYTcLxUCWPIohGd7boRBcobHvceuEFNt//AZEwMe0CUkrylmJ26VkmirlEF/ca
VRwlWf3BD5hcepaxHpHhpBaI0CNQGp26Qly4xg9Cai2P//WtD/m5H79zJv2grhBhJAktI1b5
wsM0H69XeLBTY2k2Xpe3Wxc/lLy/us+bdxZja+Jy4o40sxZ3P/6Ymal5qvUKlmWitGJiZj7x
zQ+gEUyNF2neuEne7j0wKe9uUHEVS0KgU1eIC9cIYbBfd/jGu2v84hdfOuP1OqgrhBACpXRM
XSfPDx8c8GC/wa3FyUR12ak6/Ml7G7z98kpsTVxOpMxPzfK5qVkAllYeHYfxURSn5yhOz/HM
s8/2TbP8zAt0c0o9IS6eSKqjuDpawwDB2foS1xXieN9/kK6YVJcXF2jos0Apl0t3zl7pi42s
EyR4Wh23kyBMfiN3jfgySGeBnnIi1bnxpVRc9K7auDdleGwQnHRhq5tP3BmnpAzdAJxmnQeb
28MuxlOLlN1VdS58V3kYc3ZHHrvp484cHSeS6untAhXGJ7BbztEMTjoLdLEaP+hMaUdSEkmJ
PhVeZNBZIKk6Y4of3tvhe5/s8A9/+rN90wfBw/IEYRS7TkezQEHYMYIYuiduQ0yzVuagUmV2
fjHdEHMJmq7HslT68LOTs3GDzgKpw65VuemxedA8V3+i9yJE7Lwe1kUgY844PXEbYsYnZ/hc
96T40VsofOLpdlPUJQwiI6nw/Ag/OL8F8cOHT+S43abT+XRaHD3QGQPnMfQxQMrl0r05I6ku
dAigNWilOwtij7ipj38+0FlzKr7fUVKGbgDV/R3e+9FHJNxclBITL+iOp/SFDoJDKZFK4/gh
/iOmRL3geAuQvJl/qtcBWn7E8lQB9zAy3NpuHcPsRPaSgcdOPYlfkkaGPmbVj62QoY9pe8Q9
92ywcg1Ps3nQBDotwN3NypmwJCoKEKaVKDKeDLxOt0RqdqttWm7Ax+vlvul3q+2j1/u19rlp
e9Vl66CB50d8slGJrYnL0CPDtetl1vcbvPD8MwS+z//85gf4UedmHMso2kESP31N3gInjH8z
F2yNF4HS8TVJyzVMjRAwO1EglIpa8+zW05ylCRVIlaz+2siSsU1abkA+Y9F0gr7pbcvg5kyO
iqNoOj4yZnN/vC65rIXXx6GynyYOaWS4NDJcGhkOrjYynNaaVqvN+HgRGQXUGg4z05NpZLgh
aAaNDFcqlZDeFlq6mLkVhJntm1ZrjQoOKJitRHkoIzzSGNkFDCve7zrykeGUDNnd32d8vMj2
1jZRGFAoTSDShbAr1wzsDu3XcT75VYzsHOb4G2Tm/m7/9MEe3tZ/wZ6Y6ZumF2E4ju800dJB
Y5G/9c9ile2JWAhrN+s0mi201jheiGEIjHQh7Mo1gy6EmYbGyN0gO/vTSG/zXL0MJWb+NmO3
/1HsPABko8FYqYT0d3A3//PTsxBmGCafef4z2JkMYys3CSNJ1kjdoZ8otAIRb/P5afeL5BgP
91VeMEMxAGGYjB3rpyfd+Z8yQgjB5ZzdcjwLE/TlPB2HvhCW8mQjhA36UfPuo9u0pwaQMiAK
EXfx8JKe3hdBagApA3LB+yvPw8ig1cVEKjlz6Uu5asr1QVholWyqdjCeUme4lCeTjteAOGwF
zp+huayn90WQGkDKgCji3z6P9/QWwgJ9Oa3Mychw9TKtw10ptVrt4fvNKs1DR6Tj73dpN2q4
PRyVupHh3n33eyciw2kVsXr/UwKp8Fo1Pr63muiYzpRRwry0OfojhEGyg1zjczIynNtmp9bk
40/W+MzKLNt7e2x/+gkLiyvM33mZ8SxUD3bZ2NrFEgFoQSA1lrBYee55TrsgObUDGr7P+ofv
M3v7xaPIcO1GhUJ+jL1yHcupgJkFle4JHoZm4D3BMkLrjhetUuG5ecrIP4zsMM0bKq4AAAWO
SURBVGBdlIytfyxXCCs/hh153FxaIJezkUaW5VvPMDkxgVPd46ONNrZtk82Z2FogrAy67TA2
PoHd4/hL08pwY34W5b9AKf/wGCQ7k2X7/n0Wbt4iM17CXd8kvLmS7gkegmZgVwihMMwMpmEi
xfl5akMgEuwFPp6PZVlo1QlpcemuELmJGW5PnE7y6HB0/ShMzlCYnGHl5s0T72cLE7z2xutH
f0/PzAHpnuCUPlzVGCAlJTGGhX7ESrAe4RFeagApA6G1PHSGE4/e6X5BK8GXsWErNYCUwTgy
gCeb1ABSHot4npqjG/IjNYCUAdGAAcJEP8rbM10JTnnq0FFnhfYJJzWAlMfEGCzc24gwFAMI
3CY/+KvvU215lHc3+eF7H6SR4Z44dCeWWIw5eq1DMOxz0wyLobRhvu+wvLxM23HRoWJpegw3
0mSGcFL8VZ3gDoMdDnHZZRv4O5MBCButFSooE9S+0ze9bN8Dxh+j/hotPcL6XzwyvXQFQYI4
okMxgLHxaXbu3WdxaQmdLbJbafIZC4JAE4bh0SFsURTh+z5CiMND2dSZ14ZhIKU8ej8MQ3zf
xzTNIx+X815HUUQQBFiWhTqMQGwYxtGN0et1FEWEYdg3DXCmrF1Nrzr0ey2lPKp/t55x6tOr
/v3qFoadAaplWefW+XT9Vf421tQUkR4jM/1FpLPW9/cW9gRG9tW+9T/+Gx6vp1IK3++Eucwt
/vy5eXSRQQ6pz0bA61u2UYsMF4bhwJHhtNZ4npc4Mlwmk7m2kdF838eyrESBCUa1LoNohhIZ
rh9hGOI4DtlsJ8qYlJJcLv7xrN0nVVJNLpdLFBoxablGXWPbdiIDGOW6JNWM3CxQu15la/eA
XC6HbRlsPFhDGxaGjlhdXUUbFtvbO+RyuTP/stkshgpYfbBFJpcjdFvcf7BF1jbY3i331Ni2
Teg22d6vkM3laNbKbO2V0ZFLteH21TRrZaoNh1wux8HOJpV6m1a1TKBFX83B7iZuIMnaFpvr
qzi+ZH9rG7NH+k79TTbX11DCwkKyunofJSy2t7d7ps/lcpg6ZHVtEzubJfLb3H+wScY22D78
Tk//y2QyRH6brd0y2VyOdr3C5u4BSJ9K3elbl3a9QqXeIpfLUd7bolxr4tSreJK+mvLeFm0/
Ipux2VpfpeWFHGxtY/Srv91JJzGxhWL1/qdEwmZ7a5tsv/ojWX2wgZXJIgOX+w82sCyD7Z39
nulHzwCcNvLwMAevvkelHREEIXauwMR4gfLuDm037DvztrW1jVYBodQUSyWyGZvNzW2UPEez
vUMYdHzWSxOT2JbJXrmC33b6lnN7e5sg6PRPJ6emETqkXK7i+X2iJEuPrb1ap09rmExNThI4
daqVBlGfgoWtPfYbnTGKmS0wWSpQ2duh6fSvy/bWNkqFhBLGxkvkMjZbm9vI6PzvLAp9lNaM
T0ySsUz2Dg7wnf7139rexj+s6+TkNAaScqWK5/bpf6uA7d0Kge+DMJiamiJym1QOaoR9Cqad
PXbqEX4QYGTyTE+MUdvfodkO+k697u1sE0UhoVQUiuMUshl2tnYI+9R/5AxgbGyMIPBxHAe7
OEUp0zlYrV3ZZbfqABq3XaffOQszM9MgI4JIs7m+ThCGgKLe6B+YdWZ6+nBQC+trq0RhgAwj
2l7/wdTMzAx+EACa1dVVwjBCqgjX7XM2gZlldrJIEISo0GNtY5swUkjl47m9jcYqTDOZgyAI
cWu7bJc79ffb9b6u49MzMwgVEkSK7Y11vCAENPVG89y6HNX/wSphGCIjSbvfzXyoCcJO/dcO
6x/JCNfrU3/DZmaqRBAEaBmy9mCDMFIoQjynt0bkp5guGARBQNDYZ+Og3am/W6ffqUyT09OY
WuKHir2tDdpuAKjOGLdH+v8PzqZzou5kIbkAAAAASUVORK5CYII=