<?xml version='1.0' encoding='utf-8' ?> <!-- build 20212.21.1214.2055 --> <workbook original-version='18.1' source-build='2021.2.6 (20212.21.1214.2055)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'> <document-format-change-manifest> <_.fcp.AnimationOnByDefault.true...AnimationOnByDefault /> <_.fcp.MarkAnimation.true...MarkAnimation /> <_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy /> <_.fcp.ObjectModelTableType.true...ObjectModelTableType /> <_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel /> <SheetIdentifierTracking /> <SortTagCleanup /> <WindowsPersistSimpleIdentifiers /> </document-format-change-manifest> <preferences> <preference name='ui.encoding.shelf.height' value='24' /> <preference name='ui.shelf.height' value='26' /> </preferences> <_.fcp.AnimationOnByDefault.false...style> <_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule element='animation'> <_.fcp.AnimationOnByDefault.false...format attr='animation-on' value='ao-on' /> </_.fcp.AnimationOnByDefault.false..._.fcp.MarkAnimation.true...style-rule> </_.fcp.AnimationOnByDefault.false...style> <datasources> <datasource caption='union_sensor' inline='true' name='federated.079stxi1euaet517wfv5w0pzldd0' version='18.1'> <connection class='federated'> <named-connections> <named-connection caption='union_sensor' name='textscan.0swlw0z038a9aq19yhfd608kivmf'> <connection class='textscan' directory='C:/Users/User/Desktop/ssd-work/homeiot/preproc/data/backup' filename='union_sensor.csv' password='' server='' /> </named-connection> </named-connections> <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.0swlw0z038a9aq19yhfd608kivmf' name='union_sensor.csv' table='[union_sensor#csv]' type='table'> <columns character-set='UTF-8' header='yes' locale='ko_KR' separator=','> <column datatype='integer' name='F1' ordinal='0' /> <column datatype='string' name='device_id' ordinal='1' /> <column datatype='integer' name='sk' ordinal='2' /> <column datatype='datetime' name='timestamp' ordinal='3' /> <column datatype='string' name='model' ordinal='4' /> <column datatype='string' name='id' ordinal='5' /> <column datatype='string' name='e_type' ordinal='6' /> <column datatype='real' name='hum' ordinal='7' /> <column datatype='real' name='temp' ordinal='8' /> <column datatype='integer' name='battery' ordinal='9' /> <column datatype='integer' name='status' ordinal='10' /> <column datatype='integer' name='year' ordinal='11' /> <column datatype='integer' name='month' ordinal='12' /> <column datatype='integer' name='day' ordinal='13' /> <column datatype='integer' name='hour' ordinal='14' /> <column datatype='string' name='illum' ordinal='15' /> <column datatype='string' name='motion' ordinal='16' /> <column datatype='string' name='door' ordinal='17' /> </columns> </_.fcp.ObjectModelEncapsulateLegacy.false...relation> <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.0swlw0z038a9aq19yhfd608kivmf' name='union_sensor.csv' table='[union_sensor#csv]' type='table'> <columns character-set='UTF-8' header='yes' locale='ko_KR' separator=','> <column datatype='integer' name='F1' ordinal='0' /> <column datatype='string' name='device_id' ordinal='1' /> <column datatype='integer' name='sk' ordinal='2' /> <column datatype='datetime' name='timestamp' ordinal='3' /> <column datatype='string' name='model' ordinal='4' /> <column datatype='string' name='id' ordinal='5' /> <column datatype='string' name='e_type' ordinal='6' /> <column datatype='real' name='hum' ordinal='7' /> <column datatype='real' name='temp' ordinal='8' /> <column datatype='integer' name='battery' ordinal='9' /> <column datatype='integer' name='status' ordinal='10' /> <column datatype='integer' name='year' ordinal='11' /> <column datatype='integer' name='month' ordinal='12' /> <column datatype='integer' name='day' ordinal='13' /> <column datatype='integer' name='hour' ordinal='14' /> <column datatype='string' name='illum' ordinal='15' /> <column datatype='string' name='motion' ordinal='16' /> <column datatype='string' name='door' ordinal='17' /> </columns> </_.fcp.ObjectModelEncapsulateLegacy.true...relation> <metadata-records> <metadata-record class='capability'> <remote-name /> <remote-type>0</remote-type> <parent-name>[union_sensor.csv]</parent-name> <remote-alias /> <aggregation>Count</aggregation> <contains-null>true</contains-null> <attributes> <attribute datatype='string' name='character-set'>"UTF-8"</attribute> <attribute datatype='string' name='collation'>"ko"</attribute> <attribute datatype='string' name='currency'>"₩"</attribute> <attribute datatype='string' name='debit-close-char'>""</attribute> <attribute datatype='string' name='debit-open-char'>""</attribute> <attribute datatype='string' name='field-delimiter'>","</attribute> <attribute datatype='string' name='header-row'>"true"</attribute> <attribute datatype='string' name='locale'>"ko_KR"</attribute> <attribute datatype='string' name='single-char'>""</attribute> </attributes> </metadata-record> <metadata-record class='column'> <remote-name>F1</remote-name> <remote-type>20</remote-type> <local-name>[F1]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>F1</remote-alias> <ordinal>0</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>device_id</remote-name> <remote-type>129</remote-type> <local-name>[device_id]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>device_id</remote-alias> <ordinal>1</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>sk</remote-name> <remote-type>20</remote-type> <local-name>[sk]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>sk</remote-alias> <ordinal>2</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>timestamp</remote-name> <remote-type>135</remote-type> <local-name>[timestamp]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>timestamp</remote-alias> <ordinal>3</ordinal> <local-type>datetime</local-type> <aggregation>Year</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>model</remote-name> <remote-type>129</remote-type> <local-name>[model]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>model</remote-alias> <ordinal>4</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>id</remote-name> <remote-type>129</remote-type> <local-name>[id]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>id</remote-alias> <ordinal>5</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>e_type</remote-name> <remote-type>129</remote-type> <local-name>[e_type]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>e_type</remote-alias> <ordinal>6</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>hum</remote-name> <remote-type>5</remote-type> <local-name>[hum]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>hum</remote-alias> <ordinal>7</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>temp</remote-name> <remote-type>5</remote-type> <local-name>[temp]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>temp</remote-alias> <ordinal>8</ordinal> <local-type>real</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>battery</remote-name> <remote-type>20</remote-type> <local-name>[battery]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>battery</remote-alias> <ordinal>9</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>status</remote-name> <remote-type>20</remote-type> <local-name>[status]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>status</remote-alias> <ordinal>10</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>year</remote-name> <remote-type>20</remote-type> <local-name>[year]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>year</remote-alias> <ordinal>11</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>month</remote-name> <remote-type>20</remote-type> <local-name>[month]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>month</remote-alias> <ordinal>12</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>day</remote-name> <remote-type>20</remote-type> <local-name>[day]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>day</remote-alias> <ordinal>13</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>hour</remote-name> <remote-type>20</remote-type> <local-name>[hour]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>hour</remote-alias> <ordinal>14</ordinal> <local-type>integer</local-type> <aggregation>Sum</aggregation> <contains-null>true</contains-null> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>illum</remote-name> <remote-type>129</remote-type> <local-name>[illum]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>illum</remote-alias> <ordinal>15</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <approx-count>1</approx-count> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>motion</remote-name> <remote-type>129</remote-type> <local-name>[motion]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>motion</remote-alias> <ordinal>16</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <approx-count>1</approx-count> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> <metadata-record class='column'> <remote-name>door</remote-name> <remote-type>129</remote-type> <local-name>[door]</local-name> <parent-name>[union_sensor.csv]</parent-name> <remote-alias>door</remote-alias> <ordinal>17</ordinal> <local-type>string</local-type> <aggregation>Count</aggregation> <approx-count>1</approx-count> <scale>1</scale> <width>1073741823</width> <contains-null>true</contains-null> <collation flag='0' name='LKO_RKR' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id> </metadata-record> </metadata-records> </connection> <aliases enabled='yes' /> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='장소' datatype='string' name='[Calculation_2084885207603175427]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소' WHEN '00158d0005bb968a' THEN '연구소' WHEN '00158d0002cab225' THEN '연구소' WHEN '00158d0005a9998b' THEN '연구소' WHEN '00158d00028d93d8' THEN '3회의실' WHEN '00158d0005bb96f3' THEN '3회의실' WHEN '00158d0002d545b4' THEN '3회의실' WHEN '00158d0006c9d5ed' THEN '3회의실' ELSE 'Unknown type' END' /> </column> <column caption='Door(복사본)' datatype='string' name='[Door(복사본)_2084885207600693250]' role='dimension' type='nominal'> <calculation class='tableau' formula='[door]' /> </column> <column caption='Illum(복사본)' datatype='integer' datatype-customized='true' name='[Illum(복사본)_2084885207583797248]' role='measure' type='quantitative'> <calculation class='tableau' formula='INT([illum])' /> </column> <_.fcp.ObjectModelTableType.true...column caption='union_sensor.csv' datatype='table' name='[__tableau_internal_object_id__].[union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D]' role='measure' type='quantitative' /> <column caption='Battery' datatype='integer' name='[battery]' role='measure' type='quantitative' /> <column caption='Day' datatype='integer' name='[day]' role='dimension' type='quantitative' /> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column caption='Door' datatype='string' name='[door]' role='dimension' type='nominal' /> <column caption='E Type' datatype='string' name='[e_type]' role='dimension' type='nominal' /> <column caption='Hour' datatype='integer' name='[hour]' role='measure' type='quantitative' /> <column caption='Hum' datatype='real' name='[hum]' role='measure' type='quantitative' /> <column caption='Id' datatype='string' name='[id]' role='dimension' type='nominal' /> <column caption='Illum' datatype='string' name='[illum]' role='dimension' type='nominal' /> <column caption='Model' datatype='string' name='[model]' role='dimension' type='nominal' /> <column caption='Month' datatype='integer' name='[month]' role='dimension' type='quantitative' /> <column caption='Motion' datatype='string' name='[motion]' role='dimension' type='nominal' /> <column caption='Sk' datatype='integer' name='[sk]' role='measure' type='quantitative' /> <column caption='Status' datatype='integer' name='[status]' role='measure' type='quantitative' /> <column caption='Temp' datatype='real' name='[temp]' role='measure' type='quantitative' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> <column caption='Year' datatype='integer' name='[year]' role='dimension' type='quantitative' /> <layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' /> <semantic-values> <semantic-value key='[Country].[Name]' value='"대한민국"' /> </semantic-values> <_.fcp.ObjectModelEncapsulateLegacy.true...object-graph> <objects> <object caption='union_sensor.csv' id='union_sensor.csv_BDC6780559634D8DA574EAF1CA967B7D'> <properties context=''> <relation connection='textscan.0swlw0z038a9aq19yhfd608kivmf' name='union_sensor.csv' table='[union_sensor#csv]' type='table'> <columns character-set='UTF-8' header='yes' locale='ko_KR' separator=','> <column datatype='integer' name='F1' ordinal='0' /> <column datatype='string' name='device_id' ordinal='1' /> <column datatype='integer' name='sk' ordinal='2' /> <column datatype='datetime' name='timestamp' ordinal='3' /> <column datatype='string' name='model' ordinal='4' /> <column datatype='string' name='id' ordinal='5' /> <column datatype='string' name='e_type' ordinal='6' /> <column datatype='real' name='hum' ordinal='7' /> <column datatype='real' name='temp' ordinal='8' /> <column datatype='integer' name='battery' ordinal='9' /> <column datatype='integer' name='status' ordinal='10' /> <column datatype='integer' name='year' ordinal='11' /> <column datatype='integer' name='month' ordinal='12' /> <column datatype='integer' name='day' ordinal='13' /> <column datatype='integer' name='hour' ordinal='14' /> <column datatype='string' name='illum' ordinal='15' /> <column datatype='string' name='motion' ordinal='16' /> <column datatype='string' name='door' ordinal='17' /> </columns> </relation> </properties> </object> </objects> </_.fcp.ObjectModelEncapsulateLegacy.true...object-graph> </datasource> </datasources> <worksheets> <worksheet name='1분단위데이터통합'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='장소' datatype='string' name='[Calculation_2084885207603175427]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소' WHEN '00158d0005bb968a' THEN '연구소' WHEN '00158d0002cab225' THEN '연구소' WHEN '00158d0005a9998b' THEN '연구소' WHEN '00158d00028d93d8' THEN '3회의실' WHEN '00158d0005bb96f3' THEN '3회의실' WHEN '00158d0002d545b4' THEN '3회의실' WHEN '00158d0006c9d5ed' THEN '3회의실' ELSE 'Unknown type' END' /> </column> <column caption='Illum(복사본)' datatype='integer' datatype-customized='true' name='[Illum(복사본)_2084885207583797248]' role='measure' type='quantitative'> <calculation class='tableau' formula='INT([illum])' /> </column> <column-instance column='[Illum(복사본)_2084885207583797248]' derivation='Avg' name='[avg:Illum(복사본)_2084885207583797248:qk]' pivot='key' type='quantitative' /> <column-instance column='[door]' derivation='Count' name='[cnt:door:qk]' pivot='key' type='quantitative' /> <column-instance column='[motion]' derivation='Count' name='[cnt:motion:qk]' pivot='key' type='quantitative' /> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column caption='Door' datatype='string' name='[door]' role='dimension' type='nominal' /> <column-instance column='[timestamp]' derivation='Day' name='[dy:timestamp:ok]' pivot='key' type='ordinal' /> <column-instance column='[timestamp]' derivation='Hour' name='[hr:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Hum' datatype='real' name='[hum]' role='measure' type='quantitative' /> <column caption='Illum' datatype='string' name='[illum]' role='dimension' type='nominal' /> <column-instance column='[hum]' derivation='Median' name='[med:hum:qk]' pivot='key' type='quantitative' /> <column-instance column='[temp]' derivation='Median' name='[med:temp:qk]' pivot='key' type='quantitative' /> <column-instance column='[timestamp]' derivation='Month' name='[mn:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Motion' datatype='string' name='[motion]' role='dimension' type='nominal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[Calculation_2084885207603175427]' derivation='None' name='[none:Calculation_2084885207603175427:nk]' pivot='key' type='nominal' /> <column caption='Temp' datatype='real' name='[temp]' role='measure' type='quantitative' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='level-members' level='[none:Calculation_2084885207584038913:nk]' user:ui-enumeration='all' user:ui-marker='enumerate' /> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> </slices> <aggregation value='true' /> </view> <style /> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='3' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[avg:Illum(복사본)_2084885207583797248:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='4' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='5' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk] * ([federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[avg:Illum(복사본)_2084885207583797248:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk] + [federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk])))))</rows> <cols>([federated.079stxi1euaet517wfv5w0pzldd0].[mn:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[dy:timestamp:ok] / [federated.079stxi1euaet517wfv5w0pzldd0].[hr:timestamp:ok]))</cols> </table> <simple-id uuid='{B5A063F8-7037-492A-AF3A-3DAC0FEEC01A}' /> </worksheet> <worksheet name='1분단위데이터통합 (2)'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='장소' datatype='string' name='[Calculation_2084885207603175427]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소' WHEN '00158d0005bb968a' THEN '연구소' WHEN '00158d0002cab225' THEN '연구소' WHEN '00158d0005a9998b' THEN '연구소' WHEN '00158d00028d93d8' THEN '3회의실' WHEN '00158d0005bb96f3' THEN '3회의실' WHEN '00158d0002d545b4' THEN '3회의실' WHEN '00158d0006c9d5ed' THEN '3회의실' ELSE 'Unknown type' END' /> </column> <column caption='Illum(복사본)' datatype='integer' datatype-customized='true' name='[Illum(복사본)_2084885207583797248]' role='measure' type='quantitative'> <calculation class='tableau' formula='INT([illum])' /> </column> <column-instance column='[Illum(복사본)_2084885207583797248]' derivation='Avg' name='[avg:Illum(복사본)_2084885207583797248:qk]' pivot='key' type='quantitative' /> <column-instance column='[door]' derivation='Count' name='[cnt:door:qk]' pivot='key' type='quantitative' /> <column-instance column='[motion]' derivation='Count' name='[cnt:motion:qk]' pivot='key' type='quantitative' /> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column caption='Door' datatype='string' name='[door]' role='dimension' type='nominal' /> <column-instance column='[timestamp]' derivation='Hour' name='[hr:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Hum' datatype='real' name='[hum]' role='measure' type='quantitative' /> <column caption='Illum' datatype='string' name='[illum]' role='dimension' type='nominal' /> <column-instance column='[hum]' derivation='Median' name='[med:hum:qk]' pivot='key' type='quantitative' /> <column-instance column='[temp]' derivation='Median' name='[med:temp:qk]' pivot='key' type='quantitative' /> <column caption='Motion' datatype='string' name='[motion]' role='dimension' type='nominal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[Calculation_2084885207603175427]' derivation='None' name='[none:Calculation_2084885207603175427:nk]' pivot='key' type='nominal' /> <column-instance column='[timestamp]' derivation='None' name='[none:timestamp:qk]' pivot='key' type='quantitative' /> <column caption='Temp' datatype='real' name='[temp]' role='measure' type='quantitative' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='union' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate'> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-모션"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-문열림"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-온습도"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-조도"' /> </groupfilter> </filter> <filter class='quantitative' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:timestamp:qk]' included-values='in-range'> <min>#2021-08-30 00:00:00#</min> <max>#2021-09-29 23:59:59#</max> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:timestamp:qk]</column> </slices> <aggregation value='true' /> </view> <style> <style-rule element='axis'> <encoding attr='space' class='0' field='[federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk]' field-type='quantitative' max='87.837875578378302' min='50.0' range-type='fixed' scope='rows' type='space' /> <encoding attr='space' class='0' field='[federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk]' field-type='quantitative' max='270.92490118577075' min='230.0' range-type='fixed' scope='rows' type='space' /> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='3' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[avg:Illum(복사본)_2084885207583797248:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='4' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='5' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk] * ([federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[avg:Illum(복사본)_2084885207583797248:qk] + ([federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk] + [federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk])))))</rows> <cols>[federated.079stxi1euaet517wfv5w0pzldd0].[hr:timestamp:ok]</cols> </table> <simple-id uuid='{1E624A02-0685-403B-858D-88E1A294011F}' /> </worksheet> <worksheet name='1일단위데이터유무'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='장소' datatype='string' name='[Calculation_2084885207603175427]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소' WHEN '00158d0005bb968a' THEN '연구소' WHEN '00158d0002cab225' THEN '연구소' WHEN '00158d0005a9998b' THEN '연구소' WHEN '00158d00028d93d8' THEN '3회의실' WHEN '00158d0005bb96f3' THEN '3회의실' WHEN '00158d0002d545b4' THEN '3회의실' WHEN '00158d0006c9d5ed' THEN '3회의실' ELSE 'Unknown type' END' /> </column> <column caption='Illum(복사본)' datatype='integer' datatype-customized='true' name='[Illum(복사본)_2084885207583797248]' role='measure' type='quantitative'> <calculation class='tableau' formula='INT([illum])' /> </column> <column-instance column='[Illum(복사본)_2084885207583797248]' derivation='Count' name='[cnt:Illum(복사본)_2084885207583797248:qk]' pivot='key' type='quantitative' /> <column-instance column='[door]' derivation='Count' name='[cnt:door:qk]' pivot='key' type='quantitative' /> <column-instance column='[hum]' derivation='Count' name='[cnt:hum:qk]' pivot='key' type='quantitative' /> <column-instance column='[motion]' derivation='Count' name='[cnt:motion:qk]' pivot='key' type='quantitative' /> <column-instance column='[temp]' derivation='Count' name='[cnt:temp:qk]' pivot='key' type='quantitative' /> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column caption='Door' datatype='string' name='[door]' role='dimension' type='nominal' /> <column caption='Hum' datatype='real' name='[hum]' role='measure' type='quantitative' /> <column caption='Illum' datatype='string' name='[illum]' role='dimension' type='nominal' /> <column caption='Motion' datatype='string' name='[motion]' role='dimension' type='nominal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[Calculation_2084885207603175427]' derivation='None' name='[none:Calculation_2084885207603175427:nk]' pivot='key' type='nominal' /> <column-instance column='[timestamp]' derivation='Day-Trunc' name='[tdy:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Temp' datatype='real' name='[temp]' role='measure' type='quantitative' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[:Measure Names]'> <groupfilter function='union' user:op='manual'> <groupfilter function='member' level='[:Measure Names]' member='"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:hum:qk]"' /> <groupfilter function='member' level='[:Measure Names]' member='"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:temp:qk]"' /> <groupfilter function='member' level='[:Measure Names]' member='"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:Illum(복사본)_2084885207583797248:qk]"' /> <groupfilter function='member' level='[:Measure Names]' member='"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk]"' /> <groupfilter function='member' level='[:Measure Names]' member='"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk]"' /> </groupfilter> </filter> <manual-sort column='[federated.079stxi1euaet517wfv5w0pzldd0].[:Measure Names]' direction='ASC'> <dictionary> <bucket>"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:hum:qk]"</bucket> <bucket>"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:temp:qk]"</bucket> <bucket>"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:Illum(복사본)_2084885207583797248:qk]"</bucket> <bucket>"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:door:qk]"</bucket> <bucket>"[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk]"</bucket> </dictionary> </manual-sort> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='level-members' level='[none:Calculation_2084885207584038913:nk]' user:ui-enumeration='all' user:ui-marker='enumerate' /> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[:Measure Names]</column> </slices> <aggregation value='true' /> </view> <style> <style-rule element='mark'> <encoding attr='color' field='[federated.079stxi1euaet517wfv5w0pzldd0].[Multiple Values]' palette='tableau-map-temperatur' type='interpolated' /> </style-rule> </style> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <encodings> <text column='[federated.079stxi1euaet517wfv5w0pzldd0].[Multiple Values]' /> </encodings> <style> <style-rule element='mark'> <format attr='mark-labels-show' value='true' /> </style-rule> </style> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk] / [federated.079stxi1euaet517wfv5w0pzldd0].[:Measure Names])</rows> <cols>[federated.079stxi1euaet517wfv5w0pzldd0].[tdy:timestamp:ok]</cols> </table> <simple-id uuid='{57F81394-5074-42B4-B21F-790558C3DF6C}' /> </worksheet> <worksheet name='모션-문열림'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='Door(복사본)' datatype='string' name='[Door(복사본)_2084885207600693250]' role='dimension' type='nominal'> <calculation class='tableau' formula='[door]' /> </column> <column-instance column='[Door(복사본)_2084885207600693250]' derivation='Count' name='[cnt:Door(복사본)_2084885207600693250:qk]' pivot='key' type='quantitative' /> <column-instance column='[motion]' derivation='Count' name='[cnt:motion:qk]' pivot='key' type='quantitative' /> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column caption='Door' datatype='string' name='[door]' role='dimension' type='nominal' /> <column-instance column='[timestamp]' derivation='Day' name='[dy:timestamp:ok]' pivot='key' type='ordinal' /> <column-instance column='[timestamp]' derivation='Month' name='[mn:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Motion' datatype='string' name='[motion]' role='dimension' type='nominal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[timestamp]' derivation='Quarter' name='[qr:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> <column-instance column='[timestamp]' derivation='Year' name='[yr:timestamp:ok]' pivot='key' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='union' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate'> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-모션"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-문열림"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"연구소-모션"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"연구소-문열림"' /> </groupfilter> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> </slices> <aggregation value='true' /> </view> <style /> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <style> <style-rule element='mark'> <format attr='mark-labels-cull' value='true' /> <format attr='mark-labels-show' value='false' /> </style-rule> </style> </pane> <pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <style> <style-rule element='mark'> <format attr='mark-labels-cull' value='true' /> <format attr='mark-labels-show' value='false' /> </style-rule> </style> </pane> <pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[cnt:Door(복사본)_2084885207600693250:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> <style> <style-rule element='mark'> <format attr='mark-labels-cull' value='true' /> <format attr='mark-labels-show' value='false' /> </style-rule> </style> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk] * ([federated.079stxi1euaet517wfv5w0pzldd0].[cnt:motion:qk] + [federated.079stxi1euaet517wfv5w0pzldd0].[cnt:Door(복사본)_2084885207600693250:qk]))</rows> <cols>([federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[qr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[mn:timestamp:ok] / [federated.079stxi1euaet517wfv5w0pzldd0].[dy:timestamp:ok])))</cols> </table> <simple-id uuid='{09F36C93-9620-4E3D-83C7-3ABC09E8EC52}' /> </worksheet> <worksheet name='온습도'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column-instance column='[timestamp]' derivation='Day' name='[dy:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Hum' datatype='real' name='[hum]' role='measure' type='quantitative' /> <column-instance column='[hum]' derivation='Median' name='[med:hum:qk]' pivot='key' type='quantitative' /> <column-instance column='[temp]' derivation='Median' name='[med:temp:qk]' pivot='key' type='quantitative' /> <column-instance column='[timestamp]' derivation='Month' name='[mn:timestamp:ok]' pivot='key' type='ordinal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[timestamp]' derivation='Quarter' name='[qr:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Temp' datatype='real' name='[temp]' role='measure' type='quantitative' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> <column-instance column='[timestamp]' derivation='Year' name='[yr:timestamp:ok]' pivot='key' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='union' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate'> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-온습도"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"연구소-온습도"' /> </groupfilter> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> </slices> <aggregation value='true' /> </view> <style /> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> <pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk]'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk] * ([federated.079stxi1euaet517wfv5w0pzldd0].[med:hum:qk] + [federated.079stxi1euaet517wfv5w0pzldd0].[med:temp:qk]))</rows> <cols>([federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[qr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[mn:timestamp:ok] / [federated.079stxi1euaet517wfv5w0pzldd0].[dy:timestamp:ok])))</cols> </table> <simple-id uuid='{61469CEB-F9D1-4D4B-87E9-7FE273875F27}' /> </worksheet> <worksheet name='조도'> <table> <view> <datasources> <datasource caption='union_sensor' name='federated.079stxi1euaet517wfv5w0pzldd0' /> </datasources> <datasource-dependencies datasource='federated.079stxi1euaet517wfv5w0pzldd0'> <column caption='DeviceName' datatype='string' name='[Calculation_2084885207584038913]' role='dimension' type='nominal'> <calculation class='tableau' formula='CASE [device_id] WHEN '00158d0006c9d545' THEN '연구소-온습도' WHEN '00158d0005bb968a' THEN '연구소-문열림' WHEN '00158d0002cab225' THEN '연구소-모션' WHEN '00158d0005a9998b' THEN '연구소-조도' WHEN '00158d00028d93d8' THEN '3회의실-온습도' WHEN '00158d0005bb96f3' THEN '3회의실-문열림' WHEN '00158d0002d545b4' THEN '3회의실-모션' WHEN '00158d0006c9d5ed' THEN '3회의실-조도' ELSE 'Unknown type' END' /> </column> <column caption='Illum(복사본)' datatype='integer' datatype-customized='true' name='[Illum(복사본)_2084885207583797248]' role='measure' type='quantitative'> <calculation class='tableau' formula='INT([illum])' /> </column> <column caption='Device Id' datatype='string' name='[device_id]' role='dimension' type='nominal' /> <column-instance column='[timestamp]' derivation='Day' name='[dy:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Illum' datatype='string' name='[illum]' role='dimension' type='nominal' /> <column-instance column='[Illum(복사본)_2084885207583797248]' derivation='Median' name='[med:Illum(복사본)_2084885207583797248:qk]' pivot='key' type='quantitative' /> <column-instance column='[timestamp]' derivation='Month' name='[mn:timestamp:ok]' pivot='key' type='ordinal' /> <column-instance column='[Calculation_2084885207584038913]' derivation='None' name='[none:Calculation_2084885207584038913:nk]' pivot='key' type='nominal' /> <column-instance column='[timestamp]' derivation='Quarter' name='[qr:timestamp:ok]' pivot='key' type='ordinal' /> <column caption='Timestamp' datatype='datetime' name='[timestamp]' role='dimension' type='ordinal' /> <column-instance column='[timestamp]' derivation='Year' name='[yr:timestamp:ok]' pivot='key' type='ordinal' /> </datasource-dependencies> <filter class='categorical' column='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]'> <groupfilter function='union' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate'> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"3회의실-조도"' /> <groupfilter function='member' level='[none:Calculation_2084885207584038913:nk]' member='"연구소-조도"' /> </groupfilter> </filter> <slices> <column>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</column> </slices> <aggregation value='true' /> </view> <style /> <panes> <pane selection-relaxation-option='selection-relaxation-allow'> <view> <breakdown value='auto' /> </view> <mark class='Automatic' /> </pane> </panes> <rows>([federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk] * [federated.079stxi1euaet517wfv5w0pzldd0].[med:Illum(복사본)_2084885207583797248:qk])</rows> <cols>([federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[qr:timestamp:ok] / ([federated.079stxi1euaet517wfv5w0pzldd0].[mn:timestamp:ok] / [federated.079stxi1euaet517wfv5w0pzldd0].[dy:timestamp:ok])))</cols> </table> <simple-id uuid='{3367BDFB-3DBE-4B63-BE1A-F6FC7670E5F1}' /> </worksheet> </worksheets> <windows source-height='30'> <window class='worksheet' name='조도'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <zoom type='entire-view' /> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:device_id:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{D90F8424-CE20-4926-BF9F-594385F4A437}' /> </window> <window class='worksheet' name='온습도'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <zoom type='entire-view' /> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{6152CFFC-301A-4572-BD9E-216589A85481}' /> </window> <window class='worksheet' name='모션-문열림'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Door(복사본)_2084885207600693250:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:door:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:motion:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{D181BD26-10A9-45A9-9B47-A888387FA9BC}' /> </window> <window class='worksheet' name='1분단위데이터통합'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <zoom type='entire-view' /> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:door:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:motion:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[tmi:timestamp:qk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{93C2A2D0-B462-4A8C-9C0D-86288EFB888A}' /> </window> <window class='worksheet' name='1분단위데이터통합 (2)'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <zoom type='entire-view' /> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:door:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:motion:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:timestamp:qk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[tmi:timestamp:qk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{B37B3DCF-FAF7-4FE4-9F44-76E34DA8E5E1}' /> </window> <window class='worksheet' maximized='true' name='1일단위데이터유무'> <cards> <edge name='left'> <strip size='160'> <card type='pages' /> <card type='filters' /> <card type='marks' /> <card type='measures' /> </strip> </edge> <edge name='top'> <strip size='2147483647'> <card type='columns' /> </strip> <strip size='2147483647'> <card type='rows' /> </strip> <strip size='31'> <card type='title' /> </strip> </edge> <edge name='right'> <strip size='160'> <card param='[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]' type='filter' /> </strip> </edge> </cards> <viewpoint> <highlight> <color-one-way> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[:Measure Names]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207584038913:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:Calculation_2084885207603175427:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:door:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[none:motion:nk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[tmi:timestamp:qk]</field> <field>[federated.079stxi1euaet517wfv5w0pzldd0].[yr:timestamp:ok]</field> </color-one-way> </highlight> </viewpoint> <simple-id uuid='{12677CD7-2067-493A-9F92-A41AB239A744}' /> </window> </windows> <thumbnails> <thumbnail height='192' name='1분단위데이터통합' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAetElEQVR4nO3d2Y4cV5rY8X/skftSWSuLu6iFotTdM/a0p2G/gi9swL6wAb+Cn8EXfgDf GIZvxvBceAADXsY2YLdnMHCPerpb3ZKaUosSyWItrMp9z4x9Ob4okqrirpYiqjA8P4CozIhD xpfMOHX2OIoQQiBJbyj1rAOQpLN07jJAHMe4rnvWYUhvCP2sA5Ck75/g7u1fMxFl3rlygXqt +myKJGDpywwg/a2ksLlSxQsb7O/c5ZdHDxGqjVEqctAdc61l0WrVuXMkM4D0t5RqFigpGos0 YWNzC0Ux2R9OePfGdQrRmFmos1JRUM5bL1Acx4RhSLFYPOtQpDfAuWsE/22yWCzOOgTpJYQQ b1gVSCQ8uL9Dc22DYb+LXayytr6KqWvZXO58Fa6/t9m4z8RJqBc1+qM5a1sb1Mvlsw7re/Fm lQBpwGzuMB6PufP5bT777W2CKDnrqM695WJJp33EaNjl17/+mN2DzlmH9L15ozJAmgh008Sw bWbDDp9/8SWpopx1WOdepVqlWquhpzGHD/c5OBqcdUjfG9kIztB8PqdafbYPWjofhBDntwR4 XgPy6WOvev86aTzPI4qil6YJw5AgCF6aJo5jPM975vrfNr7lcvlM2+HpNK7rEsfxS9MEQUAY hi9NE0URvu+/NM13/R6e9/rxT8/znnyOp8/5vv8k/sfHnv4eHh8/+Tlede2nX5/bRrAQgsmw x9xPKekxxZWLhJ7D3U6X1dUmo5lLq2pz726bZqvFaLxgY61J9+gAzDIlLSK1myS+w91Oj9VW jdHMY3WlztHBLma5gTsdUmquo7sLRnMfW0/xYpW1lRoHuzsUqw2m4xGrmxdI/QUPDz1qZZNY sSjZ+nGaWov5uM/ahUsEiwmHR13WW1US1UYDRBpz1B6wvb355MYedo/wMdneWEUIQRJ67Owe cOn6jSdpRBLS7k+5sLl2fExEfH1nh+3rb/G40raYDpl5KduP0sSBy4PdPZoblynbGoqiMB31 mHkplx9dP00i9nb32bx4BV0F310yX3pYSsQiVKiWTB4eHnFho0VnMKVSKrCYjkg0G382AruC SUTHDSgZgsE8oFkx6fR8NtdbHB62KRVM2l2PrY21U5n5yWd76ueLjj3v3GI64tBLuHbl4nP/ vu8u6Hb7XL1+nTSNeXD/Hqtbl56bFs55G6BYKoNIqVgKyxA006JsaWhWCRWBohrUKjaKYrBY zEk5rq8mUcC4d8TEjdAMi7KlMxpPQFFQgGq1hjvu0ps5xFGMZRfRVVjf3MIyTUChWqvhzKcs 5nOWXoBpFzE1hclszuHhIaBgGhqD3gGlSpPBaIJp2bjzOWah+M1vVkUF0lOfq1SpIpJvfoOr uoUSLXH8bxrknU731Jyo1F8wDxJONlkeHjwkimIef526VWSl0aBQMJ+kmU6nTGezJ+/j0Mdx Fxy2j+vxhlUgjjxmbkASucDx/5Gi6pAex2MXSvieS6VWJYkiNN0kTUIsy2I+n6FqJmkSMRl0 GS1cVN1ApKdLqO+LXSyhIXhRvd0wbYqmSpyCoqhUK+VnSviTzmUGCFyXFDjY2yVKUvr9IaNh n/mgQ3/h0z3YJYgSwuWQ/e4c31uiCUECPNi5TxJHuGGC5zjMRz36syXlchV3OScRgp379zGL VcqWztJx6Bzt44Yxs8mU1uoqpBH3H+yhqAqarpMmgn77gEUQUatWqdVqIBJcP0AzbHqdQ4qF Au5yiaoJRsMh7W4fAJFEdDttJovHN7Ng78EOKd/cyaHvkKg6SfTNTROHAdPZjMe/rFK1QNVO WS6/qQLUGw3c5fLEzSAIUyhaxpMjiqKiiG+yoGEWKFgm9cZx28Rbzjhqd4jDAC9IQKQMem16 /QHt9hFLL2Q2HtDpDdi5vwOqSug7tI+OGEzmCCAKXNpHR0yXPu50iu8fvx9O58fXcN0nMT7O 1I+PiSTEC+MXnIvxgvDUufbBHkGU4j16//h4mkT4QcSkd8TQCfA9hyR02T1oI5KQMDkuaYM4 PfX3EOdMFEXCcRwxm82eOff0sVe9f500ruuKMAxfmsb3feH7/kvTPI77u8Y3n89FmqYvTeM4 joii6KVpPM8TQRC8NE0YhsJ13e8c88veP+/1458nP8fT507G//jY09/D4+MnP8errn3ydZqm 4kkv0GKxyGzgpn+ww5d7Xf7wj/6Iim28NK2iKJTL5eMWunq6gErT9NSxV71/nTSPP7Nyom6R VZrXjU9RlFzi+T5jftH7571+/PPk9V/n3NPxvizt68QhhMinG3Tn9sd0A50ffniLkvXyDCBJ ecqlDVCsVEnDkPRcjThIUl4ZoFoncSdMl8GrE0tSjjLPACJN8V0X1SpTK1lZX06SvpXMM0Ac edz96g4LL0WV026kcyb7KpBISdDQlIT0fE07kqTTvUCBu+DB7gHrW+v84ue/5oMf/QGr9QJ7 +4dU6i02N1sM+0MKpkGxXud1ZtGLNGXY61OqV1E1E9v8ZvZFHHp8fe8Ba6st+uM5771zQ5YS Uq5OlQBWsYgIA0QK1WoJzw8fjeAJfNfFW84YDQe0B9PXvkASB0wWC/76L/8vTnR6SkCShCSx YDhbsl23WUSCJJHz86X8nMoA3nKBalkEUUwqBL6zIApDFFXD8z00JeXjX/2C3/7uK144GeMp znjAeDTicO+I8eL0bElV0TEtnVrJ5nDqUzEUNC2b1VmS9DyZD4SlSUy/06PUbFK0bTRZx5HO kcynQwuR8PDokGj/PtXmZW69dyXrS0rSa8u8FyiYj3E9j6UboWa0+FySfl+5VIGG/R56oUKl XMJ4TiYQaYIXRBQLdpahSNIzMi8B5v2H/PKXv+Gn/+cv+PLO7nPTdNuH7D/YwZcdQFLOMs8A iqKhCIFhGhiW+dw0qQDbNJ5aNyVJ2ctlOnQU+AjVwDSe3wZIk4jp3KXZqGUdiiSdklkGWC6X pOm3/50uhDhecihJOcjtuUChu8BPDapl2dCVzo9c1gOINCEII7kgRjp3cskAu19+zH//858y dcJXJ5akHGVeBfKXM5Z+zFG7y/u3bqKrCghBFEVoukESx+iGRhwnGIZcLyzlK/OpEP5ixN98 skOrWcULYyq2QZomHB3s4EeCIBLouoqIY956/xaWevopBZKUpcxLgCSOSFFPjQCnccTewSGN ssHMh/F4wmq1QPPidQras49DkaSsZF4CKArs3vmaWINLV29Qtg1QQFNBKTQoCIcf3HqH0WRJ yVAA+dtfyk/2VaDlDCeOefi7LyitXaZsG6iaweUrV48TVEoArK02sw5Fkp6R/dOhBTRqFRar FyiZcjaodL5kXtm2KzVCx2P76jaqOB4ZFkIwHo8RIuHw8Ig48jnq9F53kZkkfW8yzwCRt2Q4 m7J/cMjBzsPjgyJlMp2zHHVB1fjsi7uooYMj1wRLOcu8CqRqOuVyiZZtU1vdAh6VAIMOlrZO b7SgVLTojRc0LypoqqwmSfnJPAPEcUzoOgRxSrV1XMlRNZ2/++M/BmD7ctYRSNKLZZ4BguWU 8XTBeDnAUAtsrMhN46TzI/MMYJUbrDSqNNc32Ly8lfXlJOlbOXfbpEpSnjIrAX7fBTGKolCp VDKISJKelXkJMBt2ubd3dDzhTbH48Ac3nzxTNIkC2r0xq/Ui+70JN65dRqSpfDqclJvMxwFq rXU2ajbd/oRrN9469UBdVTfRVcFgOme9qLKM5aMRpXzlsFG2QuB5VBoNdE1BiJTd+18zXXis tFYZ9HusrbY4mHjc3Mg+Gkk6KZed4sv1GunDMakAbzGlvLLF6rrCcj7lwx/9HUwNLuURiCQ9 JZeJ93apSrwcMp77FMpV/uK//gd+9oufMw1S5Pw46SxlngHSNGExn4NVYaVqg4AoCpmMx8Ty SVjSGct+TfBiwH/6s/9GjM4//Cf/lNWKjecumc4XrK9voKkqcejR6U+5sL2ZT5EkSY9kPxnO sLl2/ToJGpahgUhZLuYM+33MYo1WrcSofYSnFkEI0ufsEC9JWck8AxhWiT/64+OJb6ZpIETM bDKiO1zwzvsFAAq1Okf3d/G3NilockmklJ/Mq0Cht+CXf/MJ229dodlYp1axEUnMYrlANYqU ixZpkhBGMbYt9xGW8pV5XcOdjphPPVxnxmjqItKYP/23/5o/+S//mzA6flCWqmny5pfOROYZ wCxWWN9YJU1SqtUCoBBHIUI1aNbknB/pbGXeBjCLBVIRYVkVNBVQFP7Rv/iXJOrz9wqQpDxl v0fYcsbegx0++tVnHNw/QFFUas0Wzfo3C2MGnUM+++xzQjkuIOUs8wwgUnj7hx+yUamwtr3+ 3DRBnLLVqhDI9fBSzs7FgpjId2gPZlza3iSV06GlHJ27HWLkghgpT+eiBJCksyLnHEhvNJkB pDda9g/GChx+9fGnBG7AzR//mFZRp9fvk6QCzSqxtdZ6klYIIRvBUq5yGQfw/IA0tajWysTe gi9++2s+v/M1k9niVFpFkWuCpXxlXgIUmxu8ddWjWK1jAJgFVNWgUW9gyj3BpDOWSy9Qb/9r PrvX5Sd//yeUTYW9Bw8wimUKpk6v28ewbFzX5+aHtzDkbGgpR7ksig+8AEWELN0IK3L52c9/ xsVLV2itb1Ov1UnShO2igRcJVE22AaT85NILVGs2mC89KiUL3S5x/co1mo0GtqmzWDrUqhVm sUbFlG0AKV+5lACDToda2WY89yitFHnn7RtM3JjtrS0K9vGs0EZD7hEm5S/7EkAICtUaqllh a6VEmgQMRhNSoWCashEsna3MM4Az6XDvaE7djOiOHJLQJ0livPmEo/70VFoh5BZJUr4yrwLp dgmTED/RKRV0zFKZWx82nptWjgNIeTsXk+FG/TZH3Qk3P3gfXXaDSjk6F3OB3DBhu1XGjc86 EulNcy4ywFqjxjhQKOuyDSDlSy6Ikd5o56INIElnJfvp0JHP7oN9EiFY29ymWStnfUlJem2Z ZwARhSxdl9hJuPzu6Zs/Dlzu3d/FKhRYOj43b92UvUBSrjLPAGma4LseSno86pvGIePJhDRN SRWNSrVKmAgutco4kaAsJ8NJOcplo+xrF9e5fzQk9iPUcMYnH39ErJfZWFvFsopsrDbpz1xu bCooyJtfyk8uk+Ei3yN61LupGRZxnFCqlihUmrx3/TIAK62X/AOSlJFcMoCiaoTeAs+PKddK /OgPfoxq2pRKskEsna0cBsJS0jTBcT0MQyN2Jvz0L3/Kl19+zn67l/3lJeklchkJdt2YC5tr BEGEZha4sLFFtVLB0FXu3d9jMuhy+4s7xHJEQspZDhlA0D56yHC2pFKyUPQCP/rhD6ivrHNp a5NyyWIZxFx+1Askp0JIecohA2hc3F5HS2NGcx+RRowmcxRFQ01DhsMhlmnQWcZUDTkdWspX 9iPBoccyiOn0Rvxx2SL25yyWU+LpHM0q8cEHHwCwtpZ1JJL0rOwHwpKIuRtyeXuLNE0xSk1+ 9Ac/zvqykvRaMq8CJZHPV19+yc7eQwTHsz1P/gGYDrt8/sVXJLIRLOUs89mgJ9f5apr25KY/ 6eHhIVVdoKxcpCrXyUs5yrwEUBQFXdfRdf25Nz/ASrVEZxHLBTFS7p6UAIvFgqwKA3cxZTL3 WNtYx9BenufkghgpT08awVnedP3dr+i7KhevXqNsyzqOdH7kMhKsGwYiSRDIVq50vuSSARrr W+ixixfIjYCl8yXzDJCmCcv5AjcIUWQJIJ0z2WeAOGB/d4dELVG0c5l9LUmvLYed4hOiVEUj JkllCSCdL6cGwkTkcefuA1AM3nrnKoc7u3h+xNWb76IHC6ahzlrj2y9iCTwP3TJBKGgnukGT OOT+/QdsbKwzmCy4fvUSck28lKdTJYBIY4IopN/tEfg+ceTiRDG+49AdTnDnY9zg2z2/MIkD 9vf2+Zu//n/Mg9ODXFGwxPUTBpMZTUuwCOVAmJSvUxlAtSoUTZ2NzTVMu8Tb1y5x9Z33qdo6 vrNktnCI42+XAZbDHt3BkDuf3qY3dU6d0zQLyxCIJOZwuKQgp0NLOct8LlAcBsxncxJVp1Gv ob9iJFiS8pR5t4yqKezv7ROLkOnqVW5c3cz6kpL02jLPAN50yHg2xY8SzKKb9eUk6VvJfjp0 mtDrdilV69h2AUN/tgqUJjELx6NWlZPgpHxlXgLMB21+8/GnRGi8/d4H3Hz70jNpuu0jPNfD LL1LQbaBpRxl/3DcNCZNIYhDoiB6fiIFOUgmnYnMq0BpEjMbj0l1i2qljKE/+ytepAmOF1Au FbMMRZKece52iBFCUKvVMohIkp6V2w4xobvATw2qZTuPy0nSa8llVCqJQxZLR9bzpXMnlwyw f+cT/sf//Avm3gsawZJ0RjKvAnmLCcsQZpMJV69dRVMVEALHWWIVigSeT6Fo4/khpWIhy1Ak 6RmZd4MGyym//GSHlWaF9e2LVGyDNE2YDHssvZBU0YnjGEuFS++8h63ywsenSNL3LYdu0IQU 5dQkuDQOuHtvl1ajxMSJcRyXqq2zce1tbFWgqnLCnJSPHNYopjy4cw9fRFy9cZOKbYCq0WjU KFQbaJbH9SvbzJceRV0BuSRGylHmGcBfTJkHAUf3vqSycZ2KbaCqOusbx7NCS8XjbtF6TT4v SMpf5hlAUTXWV1cI3avUCvIml86XzCvbVqmCN1+yurlCEh13gwoh6A8GiDRmf2+fwHc5OOzI h6ZIucu8BAjdBf3xiDBJcBaw2ngHhMB1PJZKiFEo8vmd+1xsVVhGgqIqN8qW8pN5BtANi0az QaFYoLqyAYAQKcN+G0PboDccUi0V6Y6WvHdBQVPlzS/lJ/NuUHc24vbt3yGMApevvcXWWiPL y0nSt5JDFWjObOEycSYUrarMANK5knkGsCtNNtdbbJgFLly8kPXlJOlbyW06tCSdR5mVAL/v ghi5Q4yUp8xLgNmwy1c7+8d7hZklfvDD93ncz5NEPg87I9bqRfa7E965cRWRym5QKT+ZD4TV WhtcaFaYOwFvvXODk7e2ZthYhspo7rBVNVjG8tGIUr5yeWB/4LnYpTKaqiDShK/vfMHCCag3 W8xnE9bWVjkYudxczyMaSfpGLhmg0mhwuNcnTQW+M2ft4ltcUBICd8nlq3+IqcHFPAKRpKfk MvHeLpZJ3THDeYBdqvK//uzf8VcffURvHmDKGo90hrLfIimJmYwnpGaZtXoBIVKiKGI6GpLm k/8k6YVyWBPc50//438mQucf/7N/znqtSBpHjKZzVlsrAES+w95hn2tvXUUWCFKecpgMV+Dm rVskaBRMHZEmjIYDjtpthG6xVi8z6rTBrqAKQSK7QaUcZZ8BrDI/+Qf/4Ml7kcZMJ0MGU4+b 5eNHIZYaTdr3HuBtrFOQG2hIOcq8ChQ4Mz762a/YvHaZjfWLNGoF0iTCcT1U3aJUsBBCIIRc DC/lL/M7zptP8NwEhYjJ3EOkMX/yb/4V//7P/pwgDIHj6Q/y5pfOQg5LImtsX9wCAfVaESEg jmN006ZZk3N+pLOV/SZ5kcsvP/oNzY0Wq5uXWKkWiQKPIIGKfBy6dMYyLwH8+YRup81Hv/qM oweHKIqCaRdP3fy99gGfffpbwm8/eVSSvpPMM4Ci6tz48BZX1lbZuLz13DRRLNhYqcoMIOXu XCyIiUOP7nDOhc01UjkOIOXo3O0QIxfESHk6FyWAJJ0V2fkuvdFkBpDeaJnPBYqDJR/9/GMi P+KDn/yEVkHjqN0mEWAUKmxvrD1JK4SQjWApV5mXAMFyThTFKEqRaq1M7C/56svfcufeDrOF cyqtosg1wVK+Mi8Bis1Nbr4TYZVrmABWEdMq0GysUrDMrC8vSS+V/UCYomCoER9/8imuH6Ea Jltbl1hbbVG2NX73+W2++voun332uRwIk3KXy6J4Z75AFRFzJ8SKPH7x8S+4eOkKK+tbNBot 0iSiWTIJEoEmZBtAyk8uvUDNtRb90Yx6xcYolHn3xrustlqUCwWWywW1Wg1PmJQN2QaQ8pVL CdA/6rC+Wmc08yiuFLh65RITN2JjY4uifdwOqNfreYQiSadkXwIIgVYsolkVLrRKpHFAbzAi TsA05Z5h0tnKPAMsR0ccjiJW7ISjwZI0DtF0jTRw6PSnp9IKIUiSJOuQJOmJzKtAZqmGrbYJ UpN62cQoWrx38/nVHTkOIOXtXEyGG3YPOepNufnhLQy5T7aUo3MxF8iPUi60yvjxWUcivWnO RQZYazVZJAZlXbYBpHzJBTHSG+1ctAEk6axkPx068tl9sE8Ux6xvX2alVs76kpL02jLPAGno M1ssSNyUq++fvvnjwOXuvQcYto3rBtz84H3ZCyTlKvupEIpCEidohoHC8cZ4g+GQJBWg6lRq dZI0Ybtl4EUCVZOT4aT8ZD8QVqxxab3JTndM5Eco4YLbn/6KWC+zub6GZRbYWF9lMne4Zioo cocAKUe5TIZL04goOu4R0kwbUKlVa5SqK7x99Xh3sGazmUcoknRKPhkgTomCJY4XUa4Xefe9 D9DtIqVyNY/LS9IL5TAQlpKkCaPxDNPUiZwJf/Wzv+Lrr7/ksNvP/vKS9BK5jAT7fsrbb10m CiJ0q8SVi5dp1OrYps7dew8Y99vcvv07YjkiIeUshwwgGA66dIYzKmUbRbN4/+Z7lOsrbG2s UykXcMKE7VYFN5JTIaR85ZABNDbWVzDVlOHMQyQhw/EUIVS0NGI0GlGwbUYBVEw5HVrKV+aN 4ChwmDgB/cGUv1e2iIMFfuARuwGdYoVbt24B0GplHYkkPSv7XiAhSITK1nqLNE0xy01+8EPZ 5SmdD5lXgeLQ4dPffMLeYRdeMM1h3O9w+/MvZSNYyt25mA368PAhFU2gti5RlevkpRydiwUx q/UqfVfIBTFS7p6UAIvFgnNQGABQKBQQQjzTI5Qkyaljr3r/OmnSNEVRFBRFeWka4NRexk+n ed5m399HfN8l5lelySrmk++f9/rxz5Mxvs65p7+Hx8dPfo5XXfvp1+eiCnRSHMcsl0uSJKFU Kp065zjOqWOvev86aYIgQNM0dF1/YZooihBCYJrmC9MkSUIURdi2/Z3ic12XQqFw6sZ9Oo3v +xiGceqmezpNGIbHz2U1jBemieOYJEmwLOs7xfyy9897/fjnyc/x9LmT8T8+9vT38Pj4yc/x qmuffC2EOB9VoKeZpolhGCxmA8JYoXN4wMIN0UjoDicEzpy7d3dQlJTuYEzgLrh7dwfVMOh0 OhiqYH9vlzBViUOPyXzJcjam3RtiGAb9fhdN12k/3CdKFXxniuMnDHttxrMlhqbQ6Q1QkpC9 vQNQdQJ3ztKLGPU7TOYOhq7R7vZQRcze3j6pohN6S+ZOwHTUoz+aYRg67U4Xy9R4uL+PUHWW 8yFBrDLstvHCBP3RZ4gDl939Q3TDwF2O8ULotx8yXXroqqDTH5JGHrv7D9F0A8+Z4AYpw+4R 47mDrh7HTBywu3+Aohn47oylFzPqdxhNFxiaSqfbR00j9vaO4wm8BQs3ZDLsMRjPjj9Xp4uh w+7OLqmisZgNiBKVQfcIL0offQ/jZ74H27LodDroiqDTH2HbNoZhYNv2qdePf5qmiWVZr33O NE1Cf8nCCU4dtywL0zSxbRsljemPpsfn9eP//xfFYdv2+cwAj9WbVQIvoWAbuJ6PathYGlSb q9TrFXTdwtIVas1VGvUKGlAsFkCzMNUIP0golKqQRBSLBRzneD+CUqmENxowcgOCMKLWrBF6 IcWCjeN6oOrYpo5pF0gijzgRVBs1Ij/EcR2SJAVFpWCZGFYBEo8oTinXaiRhSLFYfHQthYJt sey3mceCMIxprFTxFj7dXpcgCFEefYZisYjrOgig2arhOyGFgo3reiiaiW1o2IUigeeSpIJ6 s0bghhSKNq7joWjHMVuFInFwHHPtUczHn90FVcO2DAy7QBp7RLGgUqsRByfSKCoF2yIJHLwo JU0F9WYVb+HR6/cJg/DR96A88z3Mxj0WToiim9hGNrdWpVYnDoMXntetAob6qFKjHP//v0wu s0G/rcB1UUyTfqfHzDOwlBCzXCIOXNrtNqWiTaHSJAmdJ+/tcgMQDHttwjAmEgakMY4zod2b kK430TUNAQx7bYqVFSqmQRQGjPoz+uOIWklDU21EEtHrtEmTFEXVSUXKZDCgNwppNUoEQYAo 6PS7x2mEYpKmCbPxkM7AYXWldFw9EYJBt42ysUFBEYRRSL8zZrw0aTabhGGApSi028f/jqnp JEC/02M4gbKVoFoV0sin8yiNrukkCIa9Pv1xQq2komoF0jik+yhm9VHM40cxNyoGmmoi0vjE 5zIRacJ0NKA79FhpFNE0FURKv9tGiE2KlkIYxfQ7E+aeRaPeIAwDTCGe+z2srq4SuDM8r067 3UY3Chimiue62MXjjdFd1wXAc10EIJIQ79GzE06eQ1URSYwXfHNO07TjePsLKtXyk+OGYZAm EX6gE3lL2u0upl1CV1MG3TaaboCiUQo9YtV68vcKhQL/H1C2rEdLHKYMAAAAAElFTkSuQmCC </thumbnail> <thumbnail height='192' name='1분단위데이터통합 (2)' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO2d+ZMc53nfP93TM9MzPffeu9gFsDi5OAiSMAhSIiWZli3R8SFZsiTbcWxV ymVXynHFccqp5B9wOZVKqpyyU1bKhxzLFUuRZZunQ5VkUSR4k7ix2AUWe19zn93Tx5sfFoRw Yxfcnp3Fvp8qFAbo652e/vb7vNfzVYQQAolki6JudAEkko2k7QRg2zaNRmOjiyHZImgbXQCJ xA/OvPM6ttHDzv4OUsnULdtd28R0VSkAyYNJxohgd/czO/42P5gtogU14rE4k/MF+tNBMoko k3VdCkDyYBKMGCiaiuc6dPf0EAoFyOVr7N61A81couaGSEdAabdeINu2cRyHSCSy0UWRbAGu 1QCVSoV20ILruriui23bG10UyRZA1gCSLU3bdYNKJK1ECkCypZECkGxpWiKASrXG+MRUKy4l kawJ3wUwM7/I373wXf76W8+RzRVu2OY0TcbGxqmUi1yenKGtWuOSLYHvA2Gu4zI+McVv/Msv 0NmRvmGbVS9RKlcxXUFvPETNFgQ9D9d1cRzH76JJJP53g5bKVcKhIJqmoWmBG7ZV84uMTy0S iepYlsPIwRGEI7tBJa2jJeMArtOkVK6RSCbRAnePuuQ4gKSVtKQRfOn0e5x4+33qTRnWSNqL lgjAcz2ihoGqKq24nESyaloigHR3N6XlRWxH9vNI2ouWCCAcjZGK61hNtxWXk0hWje8CaDbK nDp1FlfVMSJy+YGkvfD9iVS1EHFdoxZIEbpHD5BE0mpuEIDnudTqDWJGlEqlhmFEUVWVWq1G JBJBDQTwXBcFUAIBVtOkVRSVnu27ESgoNx1g1spcuDBKJJHBMi1GDo4AIITA87x1+ooSyZ25 QQBO0+Ty+XP0bB/i5Rf/H8eefIr+jM7E1AyBcIZ9e/oYH5skGY/TOzhA4E5nvQGFSqGE6dmk OrsJXXdF3YjT0dUDikImqmE6KyPBQoi2WJwjefC5QQACCIc0HEewY8c2arU6dBrU6hYxtUGz VuHUB28TiPXyC9sGWE0V0CjlqTSbTF84Q2bbbozwjy4pPI9UppOg4jCXLdMZVHBsFVVVCQRW Jy+J5KNww0iwa1ss58skjDDFcpVINEYqlUAB6rUaYT3E4uIyqhaip6vzlpDmdtSKOfLlKtOT c4w89hipaOiu+2+WkWDbccmWGlycznJproAQkDDCJKIhEkaYWCREPBomZegENRUtsPInINtB bYXvUyFcx2b8whiqHiDdtY3OpHHX/dcqACEErido2i6VhkWu1GC5WCNXapAt1fGEoK8jRl9H nIGuOJl4hHBQW9OgnBCCRtNhcqHI6FSOS3MF8uUGXakoewc72LOtAwUo1y0qdYtSzaLWaFKq WZRrFpbt4noerrvSrjEiIfTQ2soAEA5q7B9auV5XKkpQ++i1pBAC2/WYz1W4OJVjfK6A7bRn d3VAVTH04NUXTZj41RdOPLryb01T0dSVF81q763vAmiUsrxz6gKu55BK9HPkkb133f9OAhBC ML1UZnq5TPbqA16ompRrJp4ATVVIxnQyiQjdaYPORJRMIoIWUJnPVZhZrjCXLZOvmFhNh1Rc pzMZZaAzzkBngr6OGPFomKCm4nmCYs1kbDrP6HSWy3MFFEVhe0+SvYMd7B3soDMZRVlNFXgT rutRM20aTWfNDf2aaTM+m+fsxDLFSoOEobNrIM1D27vY0ZtED2n3LJMnBLVGkyvzRS5MZRmf zWM2HbpSBvuHOtk1kEYPtWd3tesJ6qZNsWpSbTQp16yrL50m5bqF43jYrovjeGiaiqGHiIQ1 YnqIuBEmHgmRjIWJR8LEoyEShu6/AOxGhdFLU0QjYZKd/XQko3ff/y4CePGNcTwh6EhG6UxG ScXCJA2dUHBtb0IhBMWqyWK+dlUcZeZzVeqWjRBguy5JQ2f3QIYDO7oY7Elg6HcP3VqNJwTZ Yp1LcwUuTGaZWiziCRjuT7NnW4Z9Qx2kYjpCQL7c4PzkMhen80wvldA0lR29KQ7u7GZHb4pM or3DzfuhabvULZuGZVNr2JRqJtWGTblmXhNMuWb5L4BaIcup0+dQIwZDO3fT15m86/4b3QZw HA9FYVPG6g3LZnKxxNmJJcZnC5RqJgjIJCLs397JvsEOhnqShIPt+YbfCHy/E2a1SLlap5wr oWvxewpgo9G0zffgf0gkHGT/UCf7hzqBlVpCgfsK1bYKvv/a0WQnPV0Z9u4ZZmB44IZtQnhM T03SaNSZmV+USyLXGVVR5MN/DzY0MVZ5eZqLc1UyCR09AMm+HWheE9u20XV9o4ol2UJsaDCo hSNobpZK1aXsCjq3KSisDIJpmoxTJf4jUyNKtjSbt8UnkawDUgCSLY0UgGRLIwUg2dJsaFdL o5LnwqU5MskohVKVkcOHV7XIRiJZLza0BlAUFcVrkq9adKfjOHIRmKTFbGgNENKjpDId9Pd1 s1yoENHAsaFWq0mLJElL8G0coFqt3te6Xtd1CQaDciRY0hI2ZCDMcx2uTFzGSKTIZ7NkOjop 10x27RzEbjbxPE8OhElawoaEQIoaIJWMQ8ggnbSomRYZHequQlhVZUYIScvYkEaw26wxMTWP ggeaTlJXmcvX0OU6eEmLkXOBJFualtQAS8s5vvuDN2SuH0nb4bsALl2Z5k//6lucG71ErlD0 +3ISyZpoSSN4oLebn3/2x0mn2ns5pGTr4X9eINdFVVcqmmvL84SgkM8RS6aplIrEE3GqdZN0 MiHbAJKW4nsNEAgEKCzOcH5ijkcefYxIKIDnOZiNCktLS9QdlXSljGvb6EacgBDSJVLSMloS AmUXFijmFjl57hLHj+xFuA5L+Sq9nUmq81lyJZtYSLuWalEuiZS0ipY8ZfFkkkjR5MD+ncCK Z8COoUH0qIGRyBCJ6JiWjR5QsD05H1TSOloigEqxQDgaI3A1X6OiBkimUgCEQ0EAjKh840ta T2s8wiJhCrkcjiunOEjai5YIoGnVWJpZoFxrtuJyEsmq8b0btF7KU3dVyqUSO3YMod4jU5ns BpW0Et9rALOS58233mVxYVE6xUvaDt9rAM91EYpCQL1Oa0JQq1UJ61FqtSpRI0qz6WBEI7IG kLQU37tehPAYPz+G6TbZvf8gRljD8xzy2QUaNtQbDumETqNhsmPvflQ5ECZpIb4L4HqTvPTg nhWTPM+lZnr09XYxOTFJoSKI69q17NByIExyPR/aONlrzJqgKKDfww7L96dMCWj0dGawh3aR 0Ff6/FE10skEgaBO/+AQ6VSCSs0kIgfCJIDreVTqTa4sFLkwmeXKQpG6aa/ZCQhWnGI6k1F2 DaTZP9RJX0ecSPhHVlKtM8kLq6S6BulKra9JnmRzI4SgZtrM56pcnF7xLMsW60T1EMP9aYb7 Ugz3p+9prXUnHNdjMV/l4kyO8Zk8c9kKKAp9mRj7hjpaZJJ38gKOsEknBzhy5P5M8iSbGyEE lu0yu1xmbCbP5bkC2VKd3o4YmUSEoe4kPWmDUDBAV8pA89Giqm7ZZIt1bMdthUleldFLkxhR nURnHx2J+zPJk2wehBA4rkeu3ODidI6xq29ex/Xo61h58+7qz9DXEVsXq9ePgu9tgKZpUsnn qNajhBOd930ezxP8+YsfMJstr2PpNo7AVT/bYEC9aqQdIBwKENQChLQA4WCAUHDl7+DVf3ck owx2J9rO5M71PKr1Jpfni4xOZ5mcL1I1bdJxnd39GT5+aJChniSRcHCji3oLvtcAuelx3jk9 Ttmy2btjHw/fp08wrDRo3AckZYrrCWzHvWbybTsuTce7+reLZbvYtotlOzQdD8t2yJUaTC4U 0cMa+wY7GdnRyXB/uiWC8DxB03EpVk3mshUW8lXmshWypTqVepNYNMTO3hS7BzLsGkiTjm+O Gtz/NkClyMXRMRTdoH9wO51JAyE8Zqen6OjZhlUroUcjZPMVBvp7cGQIdFeEEJRqFqNTOc5M LHFloUg4GGDfUAcHd/awqz9NUFPXZI4nhMATAs8TuJ4gX24wl6uwkKsyn6+SK9WpNpoEtQBJ I8xAV4KetEFvJkZ32iBhhO85xaVd2bDMcMX8Mg1HZWn6CtGuXhIBj4Q0ybsvqo0mo9N5zk2u uNqHNJXh/hSHdnaTNHQqjRU39UrdotpoUqk3V9zqLYe6ZWM2HRRFIaCujNgnjDADnfGrD7lB ZzJKwghv9Nf0hQ0RgGNVefu9M/T39TA/M43R2YtrWYwcOoTiyhrgo1KpW1yYynF2YomaaROP hIgbYWJ6kLgRJh4JYURCGHqQqB4kGg5uWTtVmRhLsqWRDjGSLY0UgGRLIwUg2dJsyIiK59hc vjyGbqQpF/NEjRiVWoORkf0bURzJFmZDagAlECAajZPJpFHxqFoO2zIGDbkEQNJiNsgfwKRY LlMuFSEQojcTZ6nuYrTXCL9kC9CWHmG6rstuUElLaItxAM91mF/M0t/fK6dCSFpKWwQdMxPj mAFjZU6K58k1wZKW0RYCCOk6uaVF6gMDhFVVrgmWtIy2CIGEEDiOixbUZAgkaSkt6QUy61WW lnN4d9CaoigEgxpbczqWZCPxXQDF5XkujE9QrxY5dfoCD8ZyFsmDgu8CiKfizF6+wvTEPP2D Q3LuhaSt8N8iKRggPzOH06fSMG2/LyeRrAnfBeA0PQ4/9QRW3aQrE/P7chLJmvA/M5waIhOP YsWTwIZ3OEkkN+B7SC48m2qtysJSdsNzwEgkN+O7ALRQlL0PHWCwO4V9F4uker3ud1Ekklvw PQRy7Srf/Iu/Jb1nP+nufgjdekmrXubk2XGOH30EIdOjS1pIS3qBlqfmUPp3kYjdfnR3eWmZ plmn6XgoyPToktbh+1SIWjnHu2+fond4L0M9GULRyG3jLsdx0DRNZoWQtBTf2wCqohKJRyks TXN5ZuGO0x3kG1+yEfgugEg8TVdcp9pwGBzaJuf7SNqKlrx2rUaFXL6E68lxgK2GECtJdc2m Q920KVZNChUTLaByYGcXhh7a0PK1RADJjh4CE9k7zgaVbE6EENRNm/l8lUKlQb7coFSzKFRM qo0mddOmaTsEAip6SEMPaaTjOplEhGq9yT++NkoypnP8wDaO7O4lFmm9GFoiAN2Ik0lGaTY9 uLtDkqSN8TxBqWZyabbAheksV+aLNB2Xwa4Encko6USEPWmDVEwnHg0TCWtEQsE7mtR5nmB6 ucyb52Z46c1xkobO8QMDHNndSzzammS8vvcCNRtl3nr7AzwCPHLsGHH97iYJsheofXBcj+Vi jdHpHKNTORbyVcLBADv7Ujy0vYsdfSkS6/Sgep5gsVDlndF53h+bJxoOcuyhFTH4mZlaCkBy DSEEc7kqH4wtMDaTY7lYJ5OIsG+wg/1DnQz2tMadRghBtlTnrfOzvD+2QEgL8PDuHnYPZAgH NSK6RjAQQFVXUrqrV9O6B1RlzVmuWygAlUeOPX5bAXiei2nZRCK6XBK5AXie4PzkMs+fGCMQ UHlsXx/7BjvoThkEfDSrWw1CCHKlBm+PzjKXrWA1XeqWjeN6uJ7A9bxrxh6u56GpKkEtcNV2 asWCCkVBUxUUVUFVFLSAek00LVkT7DoOamBlItztFForF7lyZZrdBw+iODau60oBtIC6aTM+ m+elN8fRwxqfe2o/g93JjS7WR8JxPZqOi+14uO6K5ZQAXNe75oLjCYHrrhj5+S6A8tIML7z8 GnsO7KFvcA/9XfFb9ilkF6jaCgM93dh2E8/zpAB8QgjBfK7K8ycuMper8plju3hsX7+vtqTt jO8BnW01SSTTKJ6N7bq33SccjlCzaggUVFW9r4xykrsjhGBmuczf/3CUXKnOzz21n4d39WxZ Z5gP8b0GcJoWuWwRJaiQSncS0u7+ppGN4PXF8wSj01lefHMcx/X42Sf3rTikb/EH/0N8rwGE aPDK8y/Rt3c7O4ZHGB7s9vuSElYsZU9PLPH8iYskomF+4RMjDHUn5IN/E74LoLyUpWtHH+fP jdORHgQpAN9wPY/xmTzf/+AKE/NFDu/q4Td+5jF65VrsO+J7CGTVK2RLFayqxcCOIcLBuy+L lCHQ2vCEYGqxxGunpzg/mWV7T5InDw2xf7Bjw7swNwNtkRrxeqQA7o0Qgly5wetnpnnnwhxJ I8zHH97OY3v7tmxvzv3SFgL40Kk8oKpSAHfgw4lnb56f5dWTkyiKwqce3clje/uI3mN0XXJn 2kIA8zNXWMpVeEgaZd8Rs+nw37/5BoeGe3jiwDYyCXl/1oO2EMDM1CR4LpltwwSFFICkdbRF wNjX10MgkiAqV0VKWkxbeoQB6LqOoih4noeiKNc+AzeMFl//ORAIXDt+rZ/vdE5VVRFCIIRY 1ecP+9lv9/l23+dOn9fzu93te7bDd9vI37AtQqDrkY1gSStpixBIItkoNjTqruYXODc+SzwR wzItRg4fRoFrRnkSid9sqACEgGBQw3JcujNxbFegeR6qqqKqsnKS+M+GCsBIdpBOmfT2dZMr VIkGFRxbvdZokkj8RjaCJS1nqVBjcrGEpipomko4qKFpKpp6dRmjphIIqIS0wMoSx6BKwKeI QPa8S1pCtdHkrfOzvHluFk8I9g914nkeTWdl2aLtuLiewHY8bNfFdVcSarlXlzh6QhBQFJIx nW1dCXZvy7CtK0FXMvqRJv21ZEFM3bRwTBPNSN4zxYWsAR4cLNvhzMQyr52eIl9ucGR3L08/ vJ10XF9ziCvEyhreYtViYr7A1GKJ6aUyS4UqUT1Ed9pguC/Fzv40vekYsejqkmz5LoDc9GXe OT2GZ3uMHHuC7X2pu+4vBbC5cT2PifkiPzw1xdhMnr2DGT71yE62dSXumCDro+B5ArPpMJ+v MjFXYHKxxHyugmW7dCWj/Npnj9z1pet7CBQMh6iUi6TTXdycGddzbSauTNHd2cFSocLwjkG/ iyPxASEEi4UaJ85M8+7FebrTBs88upNf/vQh322xVFUhqgfZ1Z9mV3/62v/bjsv7Ywv8xUsf 8NufP3bHGsf3GkB4DtmlZbRwlEjUQA//SHPFxUkuLzaIGWEyuorePUTQa2LbNrqu+1ksyTrR sBy+9tz7NJo2Tx0a5MieXqLh9pme/UfffpunHx7i4V09t93u/5LIxVleeOF7DO/azdC+gzeE QJFYktBiGeGqzOUdRvoVhKNKh5hNghCCb796hiN7evnUIzvasuv6q88+wh/89Ws8tKP7tsL0 fbQppEdIJuIEQyG0m9LqhY0UBw8fYt/evRw+NILWfvdPchfOT2ZZLtb5xJHtbfnwAyRjOj95 bJhvfu8stwt2fBeAnuzg6aefZMeePfSko35fTnIdjuvd9kdfD8o1i29+/xy/+lMP+9ZHv158 4uEdLBfrXJzO3bLN95I7TYvlfIlm0/T7UpLrEELwx995m6899966i8D1PL723Ht88ZMjdKfb P9+9qir85s8d5S9fOkmpeuNz6LsAqrkl8oUCszMzVExpfdoqTpydIRIOEtICPH9ibF1F8MNT U3Qlozy0vXPdzuk3sUiIzz39EN945cwN98J3AST7hvixY0c5+ugRErps2LaCUtXkuRMX+eVP H+JXfvIwZyeWeH9sYV3OnS3VeeWdCb7wqZG2jfvvxNF9fVi2w+nLS9f+z3cBeI7FxKXLXBwd pVRr3LBNCI+Tb7/J5Mw0J0+dxW6rWUmbEyEEf/7iB3zxkweIhoNoAZV/8/lj/N0PzjOzXP5I 53Y9j6+/fJIvPXOgrbo6V4uiKPzqTz3M337vLA3LBlrQDeqYDQqlMp4Fuw7eGC8WF2fIlSq4 hsm2jIHlCIJX1wJIp/j7483zs4SCAQ7t7Lx2D/Wgym/8zKP8j2+/xe9/5Uniq5wmcDOvnpoi ZejsH8xs2t8nEQ3y9MNDfOv7Z/nKMwf9F4AaUEFAOBy6xSI13TvEk/E0LrCcr9B1dTq0HAe4 Pyp1i+deH+c//+pTt9y/wZ4Uv/QTh/iTv3+X3/vKk4TWOEKbK9V55d0r/Kdf+fim/22eeWyY P/jfP2R6udKCcQAjRV86ip5JoTi3rvLSjTiGEWfHYL/0EP4ICCH4sxc+4AuffOiObouHd/Xw 8O4evv7SyTU1ij1P8JcvneQXPzWCsQFOjutNQFX5V585wtdfOtmaNcERI8Kp99/DcmSQ7xfv XZwnoCo8urfvrvs9e3wPrid46a1LqxbB62emiRthDt9hOsFmZFt3goPD3a0RQClfJJOKU200 W3G5LUe10eT//vN5fu2zR+7ZM6MoCr/+7BHeGZ27oTfkTuTLDV58c5yvPHNw0/X63IufeXJf awSQSCdxPYEhc1iuO0IIvv7yST731P5VG02HtAC//flj/M0rp5m9S8/Qh+f+4qdGNsTE2m9C wUBrBGA2GqCouO6NVa7nNJm4PEG9VmVqZh4ZIK2d98cWcFyPo/v713RcKqbzWz//Y/zPf3j3 jjXzibMzGHrwjjMpHwR8b86b5SznrywSVDzETY+4APSwxsT0HB1GiLq9khVCdoOujppp87ff O8vvf+XJ+0oj099h8NPHd/En33mbf/sLxwhct2ClVLP4x9dG+Y+/dH/n3iz4Pw5gN0GA8FbW fl6PWS0wNZ+juyPOYr5Kx4ACyG7Q1eC4Hl9/+TRf/OQI6cT9TzI8fmCIYq3JN757ll+5uoCl 6bh845WzfPmZgyTjD/YERpkVYhMihOD5N8aoNWy+9OMH1uWcL745zkKuwq999gjf+v45wiGN n/3YvnU5dzvT3vNYJbdlPlflxJkZPv/0Q+t2zs8c24XtevzZC+9zfirLs8f3rNu52xkpgE2G 43r8r+fe41//i0cI3sNydi0oisKvf/YIVtPlq88+smWslmQItIkQQvDyW5co1Uy+9OMHN7o4 DwRbQ+YPCIuFGq+emlrX0Ger0xZdLbnFOeaWS4wcuPMPK8RK/hfPa6sKq2UI4Gv/+B5fffaI 76lGthJtIYC67TLQYVB3BCHPwzRXlq1d7y4CCn/zvXPM56obW9gN5Oi+XvrSOpZlSYeYB8kh plEpML1cZs/wdhzZBpC0kLb0CNN1XQpA0hLaoga4HtkLJGklshdIsqWRApBsaaQAJFsaKQDJ lkYKQLKl8T89+vI8Y1fmsOsN+vcdYqg36fclJZJV47sAbLNBdjmLZ3v0tVePq0TivwCS3b30 9hVJpTtJxqTri6S98F0ArmWyMLdAKBwjkrhxSaRt1hgdHSeg61iNJgcOHwLAu7ouWCLxG98F UK+UWVxYJKwbRNPdN25UFJKd3Qi3SSoSoumuLIpXFAW1zU0XJA8G/odAPX089YmnUIM6nZnY Dds816FWqdDX30O5ahK9mhv0RzNAJRJ/8V0AAhVNhaYQBG56psPRBPv3JwBIJmTvkKT1+B5n 1AvLXJldoFSuEJALOSRthu81gBaOsmt4J54Q1BtNkndx7ZZsbVzPo2E51Eybat2iUDUpVU0K FZNC1WRHb4qPHRpcV3MO36dDu06TbDaPAOLJNEbk7gKQ06EfbDxPMDFf4NTlJYqVBoWKidl0 aDoujusRCQcx9CDxaIhULEIqFiYV00nHI5y7sswPTk1yfGQbnz66676NPq7HdwHY9TLvnDyH Z7oc/tjjxEN3r3SkAB486qbN6cuLzOeqZEt1tIDKvsEOMskoHfEIelgjqKmEtMA9Oz+spsOr p6eYWiwRDQcZ7k/z6J4+tPtMEeP/SLDVwGxYBJUwwXs8/JIHB88TjE7neO3qw3pwuJunDm+n N2N8pB6+cEjjJx4bBlZSt7/wxhjPnxjj44cH+djBIaJrzEDekhVhZq3C1MwCQ7uG0e/REJY1 wOZFCMFysc4/f3CFs1eW6c3E+MSR7ezZ1uFroq26afPd9yb44akpjo8M8BNrCI9aIoAL755g 0dI4+tgRjHs0YKQANh81s8k7F+b54ekpgprK8ZFtHN3Xv+a38UfFbDq8dnqKV09Nsb03xbOP 76bnprGnm2mJAKZGT/KDd87zmZ/9HJ3xHzWCPcdmOV8iFQ8zv1xh+1C/zAqxiRBC8O7Fef7h tVGO7uvn+Mi2tnCOd12Pdy/O89zrF/npJ/bw+Mi2O+7bkqA8pEfp7+9DU2+K/RQFu2mxlK0T VT1qtrRJ3Sx4QvDSm5c4P5Xld7/4+DUHmXb53R7d08PI9g7+6NtvowCP7u297X4tEIBDsVhH VRSUm8JA17aYm52hq6uLQrXBQwMKONIfoN1p2i5/9U+nUBWF3/3FJ9o2U11M0/idLxznv33z DdSAytF9t7rotOApUxg/f55AOkPTduG6yCaoGxx7/PEb9rb9L5DkI1Cqmfzxd97h0T29fPro LtSba/U2I6oH+Z0vPM4ffuM1FOCxm0TQgimXAR75sSMEQ2FCQflW38xML5X4w2+8zrOP7+an ju1u+4f/Q2KREL/35Sf5zqsX+GB84YZtLXki1YCKitiyiW03O0II3h9b4DuvXuC3fv4o27oS G12kNZMwwvz7Lz/Jf/mb11EV5Zrnsf+T4YrzPPfyP1OrN9Fung4qaXs8T/Dim+P809uX+L0v P7kpH/4PScV0/sOXn+Rb3z/H6FQWaIEAwkaao48exnOaq3Yml7QHtuPyFy99wFy2wu9+6QkS D8BExlRc59/94hN845XTjM3k/BeAbTWoNWy6u7s3TcwogXLN4r/+nxP0pGN89dlHCLVpT8/9 kI7r/M4Xj/NXL5+SyXElNyKE4K3zc7xxdppnjg5zcGf3vQ/apORK9fYwyJBsHEIIHNcjXzGZ mC9wdmKJUs3iN3/u6LrOu29HOpJRKYCthCcEVtNhsVDj0myeKwslppdKCCFIxXR29KY4uq+f Q8M9WyZcbYsQKLc4x+xVjzDFc6lWq7edMluomFh2ewy1bxaWCjUuzxUo1y2CgQB6SKM7Y9Cb jqEFVDqSkWvTGLYibVED1G2XgYxBwxFEFEEwGLzFXwpF4cSFSZaL9Y0u7qZBUUXppd0AAAH6 SURBVBQ6k1G293cy0GHQkzEIapr0CGs7j7BqkZnlMrt3DrE1Kl5Ju3BNAJVKpW366Q3DIBBY fbfb9W+kdjrmw/u51mPkd2ndd7kWAsXj8TVd1C9s26bZbK6pG7Rdb/T90K7fpV3LdT/HXL// psk/WM4vM35l+rbbbpdGUQjB5cuX73i+2x3jNk0uXjhPud5c9TH1SpELo2PY7q2154dx7y1l 8xwmrkyt+hoIj0sXL1Ao11Z9jPBsLl64gOncvla/3TGVQpYzZ85iObe6e6qqetvvkluaX9Pv AoLZycssLBdWdYwQDpcvT+KYVc6cu4h7myjl5mNss8707ALVcoHFbP6u32XzCKBmoQdgtcar iqKseTBNDYZJp2IrtuyrRI9Esa0a7hom+i0vLmBaNquNOIUQ1Bp13DXYzlaW5qm5gqa1+gnm 8XQHyUSc0BrW71arFWrV6hpumcA0mywsLNx7V0BRNCKREIvZIvsGDBYr974HQT2KpgpiiTSe bd11300jgJAmKNWtVRdYCEF2cY7FbHHV17BrBaYXS6xFAfVqBTUQXKMnsqBWLa9azACxaJSm dfua6XYY6QxhVdBsrl4Anm0SiaVYSwSiBTS0QGANd0zFiEVIp9Or2lt4Ngtzcwjhce5Knoxx 7yfAqleYm5tjYWGBucXlu76c/j+NCuCo3oS/4QAAAABJRU5ErkJggg== </thumbnail> <thumbnail height='192' name='1일단위데이터유무' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO29eXQc133n+6ml924A3Q2gATQ2gtjBBSTBnRQXiRSt3bISW1bsSZzETjKL k3mTZSbnvfhk3sy8TM7MxE4cJ3G8RLIUWZZlSrIWkxJFcQVJcCd2YiH2rdGNbvTeVfX+AEUB JLhKIih1fc7BOUDh3lu3uut719/9/QRN0zR0dNIUcaEroKOzkOgC0ElrdAHopDW6AHTSGl0A aUI8Hl/oKtyT6AJIEy5durTQVbgn0QWgk9boAtBJa3QB6KQ1ugB00hpdADppjS4AnbRGF4BO WqMLQCet0QWgk9boAtBJa3QB6KQ1ugB00hpdADppjS4AnbRGF4BOWqMLQCet0QWgk9boAtBJ a3QB6KQ1ugB00hp5oSugc++hKXFGelpp7RomZXZTs3QJhU4LsckBzp5vJSS6qF26hIIsE4nQ GO3NLQxOJXAVVrO0qgiLqBAY7+PixQFyl26hJBNIxRifnMScVYDDeOVOhPw+EphwOR0Id1hf Ne7nwqnTDPrjWHMrWLeyHJOoMNZxmlPdPux5FTQsLcUsqgSHLtJ0oYe4aGPxshVI3/rWt771 sXxqOvc0Pp8Pt9t9S2mnBi/w1lsHSRhtTHafoGlAY0lJJgdff4HToxr4WjndHaOyvICuI6/y /sUIDilG04HjKN7FOMLn+dUbRzm+9xWSdV+gNhuI+jh7/hw4y3FpY+z9+Y/5l5de51f7zyDm llFR6LrD4UiMtndfZX93GIchyfn9rxP0bqYocpJ/fOE95AwzHQf2Ecyvp1Lo4/nd+4mZ7Gij zfzqsE/vAXSuxeYp54nfqMJmNzHUpPLt9y4yMWqirU/lwd/9IovVdr7z3Lt0T66mev3jlG+1 Y1YnSfb+E72DAbZuXsUTz5Tx9shJ5npe1kADVbZRUb8BR2mU4b5BHIaPUluZ4nWP8TWzFYuU 5NDQe+zr6iN/aj9izUM8/fklBPJ+wF/sPcWWb6znyS9/BbvdijJ0gBP/tVGfA+hci8FoJyPD THT4HG/uP0dlbQMyU6gpD5kZRsyOLLKTCmPROLaMLGyGOOf276El5mJ5pQfJYMZmNyNdNabR NNDQUOPTdLWcpLHxGOfa+winPkptZWyZGZjFOG1HXmXvQBEPrXQyPiqQn+9CEiXcxcXIPQME TFayHDZivou8+Ysj2Nev03sAnflQGD+/l++9eITy+3+NXetqSI2MfvhvVUUBBAHU6Bj7Xvoh 7496+cIzv05tQeb8Y3nZQPTSKf7mX18HaeaSvXIXzzyWS/QjO+iPc+yl7/J6Xwa7vvI1VuXL 7JnzOClSkoQIpHzn+e7/fg5H/aN87aG1ugB0rmWq9xj/9Owh1v/uH7GjcmbeELJ6MRhPMjg6 jUMdYlQ2ssEq0/j6D3g3UM2f/YdHyTRL1y/U5KK6YhtPb8hhY3n5ZZGoDPd0EtKsdzwBhjgd u7/Di71l/NkfP0W+ESBByWIjje29RFfnMNzcjql2Ey5/C3/7P/6Jwmf+kqdXzsw5dAHoXMNo 70k6+0bh1edoNgAF9Xxt13JWVbvZ8/zfsl9U8FTfT75N4nBTIxNqhB/+Qy8CVuoeeISq8DFe OdrBxeZB1Bf+huC6TTz9wEokOcjx196lSbTPupuFmvseZJEK4p0MyONjHG1sZTqV4qd//zcg CJRs+nUeXv8gBT/6Of/n20dJhFQe+2otwYtvcXo4SPWBZ/nOATBavQh6hJj0oKOjg8rKyltK GwuOMTQS4MrQ3JJFWUE2WjzE6NgEccFCTm4udpOAb7ALf/SDhDKZnnwcqUkGfOEr5Rkc2RR7 nGjxIMMj40ST6qy7SWTk5JGbZUO8k25AiTMxOop/OjYz4RYEbNmFeJ0mwr4Rhv0RjHY3BblZ qFE/w6MTxC8/mChbdAGkC7cjgHRCXwXSSWt0AeikNboAdNIafRUordFITvXxq5+9yDsXxli0 /nG+/OhGciwqQ2ff4/lX9tDri2POqeSZr38Fd3AIxZHLIm/2zLKlphIaaubVl17mxKVpFl/O 75ZCHHvzX/n5gS5KNz3J04+sw2USCPWf4cXnf0pLwMH2LzzDzlXFTF7qJKRlUF6WfwutsUqk 9zD/67s/Z0LIYceXf4tH6gtAnebQv36f3Se6iSYlKjc/ztOPr+LSkXaq71+N40r2OAMn3+If /nUfIdnDzt/4mm4LlC7MawukJDi2+8ecUBv443/3BBP7XuB9fzbrCgUOn2rBWbmWDauXU5ET 5WSPhFcOMS3byXdnIDBjNNfadJhUzeN8/Qsb6XrrZTrMxVj79/DqeTu//4e/Sejoi5wO5VDr EXj/wDHKdv4OX91ZSdP7RzHnFaL5h5iMGyjIuwVboMAF/uovd7PxT7/Fv1kj8/z/9xOsm3ZQ 5DvMK112tm1Zz4rltajBXuJSFoGOfjzLK7Fezq6OtfHKyRBf/L0/4OGKCD/49n69B0h3RKMV u2xCkiSMVitmScIf6Kf78Hu8fuICE+EUBruH+594hgFnEdmzM0smlm59kuWyTCrUjyKAQRAY 6Oohd9mXyXNmUrdkEbvbe4k15CBLErIsIkhGHBYzwm0ve0oY7TZsRhFJM2E2mZCZ5kLrED1v P89PvzdOUhHxVKzjy55yrMpV2bNr+OoXa5FEjalUCsUo6QJIZzTRQM3qtZx77iX+dF8QR1ED zzxZhj0jziPf+GO2fXWa0webKNu6FmNcZWrMx+wVfEEQEEWB2FQvv/zhvzDkXsVXlxZx5lwM i82KLEg4MrOIJQNgzqJucQ4v/fO3eHbaSv2Oz+N1OZj0GzHd4muoORbxxScq+Pb//Uf8SDVQ u/Or1DnNpJZv4d//ZQMDp88wluOhxukAm0Rrp29OflGS0JQ4Paf38dOfNrH+y1/VBZDWKHGO 7X8HcdmX+Ov/q4ymn/2APYfOU/uF1WQYh2hrPslgzIi09zm+97MDRDJW8q3/+Rcf5tdU/D2N /PjZN8hc+zT/cddSLCK0G0zEozEUTWE6FMBkcCLJMjaXlxXrt1GZAlJDHHxnCMHspG559i2t xiRGz/JPr/fxjf/xHUrUbn741z/mSMMydpTkMtazl1bfBLakxO5//W+8etpP9ro/YOec5w3T +d6L/OP+EF/47W+yttytCyCd0VSNaChI3CUiCQKiEGdqOg6awtCZX/G3/+dFRsIf7pNKBhmD 9KG9j5qK0fjuXtTaR3h6Zx2Wy29x0aISjp49y9jqbNou9JJVtBSjQaW35X2++1ffpyf4YR2k nGX88V/+JUXZtpvaA6mxKMFYEkEUkQUJLRUgGAWIceiF7/CDo3NbfIN5bt8SGzzDj9+4xFN/ 8p9Zl29BQF8FSmsEg5n7Hn2K1176GX/yqyDuqo18+dcaEAURS2YOixaX44jOyiBamU5+GG9Y VRQCYz20ND3LHx94HnCw/stf54trHmb90Av89V/8VwpWPsjTW5dgFEWsmTmUllcih2YZH4gZ xONRFG6+Jm8uWc8ffXGSH/w/f0QIG0t2/h4PVZgABVdhGRUVrjnp7fFpJoEPLI+mJv2oyX6e /X//Ez8BzI5y3RQiXdBNIeZH3wjTSWt0AeikNfMOgRKJBKOjo/Ol1/mU4vf7cTqdC12Ne455 J8GyLN+yBwGdTwfT09P6dzoP8wpAFEWsVut8/9L5lCJJkv6dzoM+B9BJa255HyAR6eMXf//P NPZNopmzue+Jf8PDa0tRJi7wwvf+kd1HOkg4Svm13/m3fL7ew8WLndRu3kwGKuHRNl554ac0 dQewFzfwm197CmvXeQbz8lhTXDxzAy3O+XMnkS1VVFe6EYDml1/G8NRT3O3Fu2gwiJyRgQFQ kzHCCRWrxYp0B82FpilEgwEC01GQLThdWRhRSaRSmCyWKy2QqiSZmhglnAQQMNuzcGZYUeJh NIMdkwygkYqFmQwESaRmjBIEUcbiyCTLbka8feOatOeWBSDIZhoe/bc8Xp7N2OmX+dFbb7Oy 7vcQ+7qJZJXzwEPlAISHhwhWO0nEYszYIkU43dhK6QO/w5fr8gh0vMnPDvbxkDtOXPnQWikV CzPaepbhDBPe0iwyjBKpSISF2KToPHKEnF27yAcSk70cuxhidcNqMk23W5JGxNfPiWMn8UU1 NERcFQ00eEx0Dw9RsWIFtssp1WSM7guN9PiBZByyy9m+YQVTncdJFG2nyg0kA5w/eYahiSDx VBJVA0GWEQU363esJc9qvEFddObjlgVgMOayuAqUuJ/2cxcxF64lyyKQtfJ+tgZ+wU/fakLJ XcqXvrCRHDnMwJWcIrISZzKeAFQSoRCKfPVtVSY7Gwllr6fBPcruXzTx+V9b+zE94kKiMRn0 k1HQwKblRWjRfvYe8aFm512TUjY7WHX/U6wCtOkRTnUOk1JmyriyTicasJlgcnyEQDiKoglI FjuewnyMd+RSQefWTSGUOOff/QnP/uIEptK1PPxELRZJY+JiGy1Tmfzhf//fGHr2s/t8MwVL SmdltLLmoe28+ewP+Y/PjuGqe5D/8JulhI4PXUkR6mniZKyaxx8oQwQyDe/SPRTH4fUuiK1G IjJBV0sLfiDh72cqmokS8XOs8TCe5Y9Qahjl/VPtlNWtJtG9l0OnxpmOhTFl5eG2xugfjFDa sIUd66txGEy0DrdyXg6iBoZIWUsQ5nF/kIoH6Ovswzc1Tm97G0rROoorIBkJcunSACWZHpRQ EKweVm3wXJPfNz5FZpGbG3jm0ZmHW3+/JBNLd/42f3X/V+k9+TYvvvYKOb/9DQqzc8hMneDF f/ouCAaKVz+AfFVjJJrzeOTr/4VHZl0LzfrdsWgN5Zee5Tt/89qsq+eR7dU8fSdP9RFJJYKM DgwQAVLT40TMjuumFYwOqjesY0WZgTONhzBVPswuc4Dz3YPEUgJZBYtZGk/S3jsK9nzW15Uh hSevKUdJRRgf8aG6ClizpZhRfwSzEZRElImQj4SaTWo6wPDAAHEgPj7AsJRFqWvG0sWSa6NU F8Btc8sCiPaeojGYSW1+JvFUDCUpIGgaimihrmEL6q9eYaR6J9mhs/zg7wMUbythKRq+nuP8 5PvP0jE1qzDBTo69iHXfKLxyaax5Hz/5yYU59zRm7+DBr+3CfZd7d2tWGRt27iQfiI22ceji Zble9m2pKAqKMjMJFY0mMqx2jFIKh8uFxW5D0qYxGGRAJRaNY8tdxMrcRZfLiBGOJLj6rIbJ ls+a7R5SiRjNjXvRvFuwSWDO8rCqcPnM/KOoinV5lRgNEpGe87TIXlYX62v7H4VbFoBotzL8 xi84OB7E6Cxj19PPUOqK8+bf/R0nxi+n8b1DvKKBR7/SwNhAJwIC7kVr+eZ/v3Y833fwIH2z /s6t3sRDDxXPSSOIOSSmgYw7ebSPF1GSkbUEbSePMKD56JmAimU3zqOmpmn61ct0Ts29bpAK KV6WM+daMuaj/WQzAxNjCAVr2VruRFQTczMmRnh/bzN2lwNRFIBOGoc6QXBQUV+J2yTg67mE mr+IHNVP64RKTfHc++jM5ROxBk1Go/gDAbLy87neukR4bIyw1Uqu3X6dFAuHf3AQs9eLBVCi U4yFUrjdWcR8fXT1jiHasrBlZJCfm4MW86PITjLNGlNTfiR7LlYtSiAcxZ7lwjhP7zU9OsrF 4WEq6uuvrAIlYxNcbO5H8hSz2OtCEgRQkoz0NJP01FPkANQYg52d9PvDcwu8BQHo1qDzo5tD LwCqoqCoKrLBcONDIJqGqiogynfmNnAWugDmRz8QswCIkoQo3cJ0VRAQJf0r+iTRF4910pq0 bl40TSMajd484WcARVGIRCILXY17Dr0H0ElrdAHopDW6AHTSmrSeA8zHRNsB3jnVj3J5cVjO 8LB2w2ZK3bdtCjovasJH4zv76Q0kcS5axQPrKwh1dZHweskzm6+km+o7y/vHLxCKA6KNlfc/ SI0lQNuUiUqv6yMvi+rMoAvgKpxlq3nYW03LiWZM3goWF7owmz8uM+MoLQePY6jayMPZBsY7 Gjnc6qEiOMG0x8NsG1F7fjXbd5WhaaAOnaTJr1AjBRnx26gocPERosrpzEIXwFVIRgsOo4bF ZMZks+GwWQGN0EgH59uHSFlyqK+vISPpo33Qx9TYKFHZTVm+zGDfKClHMWuWFREZG2ZkdIiR yRj2/MUsLS/AJCcJq1byXZk4HAYUTxaXRmMwz16kZDBhQWV8oIeJkUkSVywa9H3LjxN9DnAr xAZp6QqT5cknxzRBU/MYTA9zsmUIszsb2dfOifYJ7DkuYhc7GVGS+Pq6GZwW8ORmMtl8inZf BLBTU+vmxOvP8/3v/5A3muLU1rjmuyFdx/fwwrM/41jHOLGkEdvl47xDp95m98FO4vPk0rl9 9B7gFoj0d9J4uhXj5dDn2RU5RAvAU76EZTW5BJnGkFHLEq8Dx+gkSTQwZVG2qIRFOVmUWYIc mFTBI5LhXcIXvrpkTvmD19zRzOI1O1m8RkOJBzl79AIlLgmSULByF5vrinSz548JXQC3gGy1 kr94PQ/evxyHlGTKH8Wg9N0kl4qiaKiJEN1909gXaUwNdXDqbCvB2UaeohVTNEHxkmvzx4MT nD91kklrGbUWEyQ/3ufS0QVwHQRkowH58jFDY95S6i7u4Wc/PoYq2alet531uTLGyyd/BNmA 4XLvIBkMaIKAEhvj0GtHeVewkFexkq15NqxqPnX1NuaEyRVkptrbrxqLxuk5eZjGtnFK6zew fnE+JlkEBEThg5RR2vYfxdiwnbJYK7/ssfDI6tJP9mP5DJLW1qCfnClEgq6zrYgFM0OgmzE5 zzLovMSCjMQkcjNvP6j0pUuXKCkpub1MaYDeA3wiyOQWFyNYbs0RlWvx4lsr1pxB3k00onN7 6AL4RBBx6H44PxWkvQDka1y0fDYRBCFtnvV2SOtPRBAEjMb0cCYlimLaPOvtoG+E6aQ1ugB0 0hpdAPOgJuMkFdA0lUQsjnr5Wjyl3jTv9UiGJ2k5ewZfVEVRUiSTcz0DaapKMpGYE4dX01Ik EsoHf5BKJVHUtF21/kTQBTAPE63vcW4M1NQEh149wCQw1baXvW2hm+adH42J7tNMWRbhsohM DJ/i7V+8Q2Nj45WfQ+8f4r0DJ+d4zEsmezh06PKOsxKhs+0sgxOJee+gc2foArgbpMZp6zNR VZaJwIzLdCWlzLXr1FRU5arWPRpBm7WXoGkaabxv+YmQ1qtAd0Yfv3p5nE1PrcKcnODomy3U Pr6Clpd/yaXoNBO+CIU19TDSxnBQYtOXfoul8Yv4XKU4ZQCF5FSUS237OHRqVrGSmco1D9MQ S6KZDQhoRLp7aRsIszyejVsCNRFhfNRHXm4BJj0WwMeCLoDbRiEeS6LywRwhgYqKJmaw4fEn KZY6eXG3n8/92tewThxhX3+QMlMAi73m8hmWJL6RKbzL1uG9umhxmolABHdeJqghWnphcY6f 5tZBNtS5SYYmaB1QKa3LxyTpAvg40AXwMSFbXbgyTEjYcLuNuKwGkhYzRq4+vGWmpLaICy8d YmLWVUG2ULN+LWV5mQhohPqaGc6sYFetzN6mXoJlGZjcxdxXs5TsOwlVozMvugBuGysmdZiW 882I/g56px3cxEcujlwPkRY/Kk5EwFnQwG/8YcOcNLGpAC0XWohShBieoKl1iqUrl2DLNbPC 3knLeITZfqDjwTECqgNPlox/yI+c48Jh0L/O20VvSubBnl9FoQME0U758kqsgCWvhpo8M5DL 8rVeQqOjKJnVbN5YgQ0zJVUlzNipuaiqmjm/KNqKqfBawLUYb7iXsRss4AiCiHS5ZVcxUbF0 CcXZdsBA4bJlFGXYsFrtmI0zR2GSkSBTkQSgEPYHiX6EJdp0Jq3Noe8eGhMXj9AaKWf9klzk eWyZVUUhHo9jtFrnP+2lqSRTKQTRgHwH43/dOe786D3AXUHAWVRPkcVP6Dq9gChJWK738gMI IgaD8Y5efp3row8a7xKSyUZpRfVCV0PnKtJaALpzXB19CKST1ugC0ElrdAHopDVpPQe4Hl3H 3+TCcBLJaKN82RoqCjL4SIsvapSLp0/QNhTEkFnMhg1LMAZGGZMyKHLariRLBAZpOnWW8VAS BAPeJWtpKDLSNxbFk5uNySACKhO9zbR09jMVTaIiYjDbWVS3kmpvpu4y9DbRBTAP074EZQ2r yUyEaD/5HtHEfSwvdd6hR2aV8dYTdCWyWL6ijPhYGwdPDbHJ7WNIkucIQLa6qFyygpKkCpEB zo4GocDK0MgkLpcbkwFgjHOnx8iuWoTng42z5DTDZ5rIcN+PV/cacVvoApgH2egg2+vFg4bb JHCi7xIRbwZCeJRLfSPERRuFpaVk241E/IP09I2SlOwUlS3GbZOZGh4kZdQYG4xTvKyIYFii oNiLN99JyhGj92SAhPtaN7ei0YI720BocoTRySjKFQ9as1PmUrdkgNPN55kMJ9EQMFgzqVyx gXz95b9tdAHcEAGrzUJKnSY2HaDndBMhkwezOsDZYJRV9aW0HTlBzFWAKTnA2akoDWvr6W7c z4Azl2xrCcUYKFiUw8Ej73F+OoFosFGzcTumWPdV91Lw9V7gaFMrisVNti2KZpmJSRDpP8fb g2F2PLaMwImDHO4YnSUJjWQkQPPhvQR8a1i3qhRdB7eOLoAboqEoKpIokUiOE06VsnbbUiyJ SQ6fbGdqsJUxcx0PratAik9x6vRpxqcSYDRQvnQjVU4LEgJkl7N1p5d4SkUQDVisJqJXv/+I ZHmr2ZZdhiCKTLSfw+QyAwqW/GruK6/EjhHr0g08Wj1zTDLRe5BT8mbWFc6UIBnM1w1MrjM/ ugBugJqK0N56EdlWhs0koirjhGMKciJMMqEgWZxI0UmmEyrWeJhoTCPXIGIyu3G7Z8waEqEJ 2lou4IvMHsZIGOMRlMqCWdcEJIMRs5biUttZ2v0SDRUZgB9BNmK1mpAQkMwphkYVikucqAWV lIsOHI67+7l8ltAFMA+B0VO8870OzAYLRdUNrCkvwmFK4nW38PYLPyQuOahu2Eh2Xi5lWXt4 9bnvk5QyqF23BY9DnnOuVzSYceXmY5pjAySgTY7MOQ8AKhNdp3n/yAXMpcuor6/EbTNybSCA KCdf/ylvSobLf+8FwJK5iB1P7sJrhtajv8Rc8whetY2j7UbWrS/7eD+gzxBpbQ26kKYQ0aFu +mQ3VbmZN06YCjPqT+JyZmKQ73yRU3eOOz96D7BAWArKqLqVhLINT87Nk+ncGfpOsE5ak/Y9 gCSlR7AhQRDS5llvh7QWgCAImEwfT/zfex1RFNPmWW8HfQikk9boAtBJa3QB6KQ1aT0HuB77 //m/0Ve8iye2ryRDFlBDrfz4+29iW/vrfHFj0bx5picmkLOzMQNKPMJkMEyGKwfTLc47NTXJ SEcT+4+cZjys4S5ZzvatK4kPnSVuq6eqyHIl7eCJ3fzscO9MPlsOD+x8jOKsflpbM1m37hp/ czo3QBfAPGQ5i5m0x5gOJclwykxeHCajruyGRmZ9TU04du2iCFBTCUKhINasWxeAGo8yPBFm 5SO/SYVbpPfEcS75pvBooF1lN+pd/QR/uBrQUnT3nCcRS+iOc+8QXQDzIFozyBYFxkNB8h0y nZMGKjx2+sOAptB7+l32NbYRNXq473Nbof0obx0+idrWRm71Vp5a5SHg95NdpBEa6eDAvgP0 TGqUNWxh88oKom17eL8rRmCoH2PeEnbu2kKeLICSIuCbJChLTATjGAvmH6HGwwGCAR9dLac5 NWVi29JiQCMRjRBNpDAbZHTfubeGLoD5EEyUltg4f2mKKpNAKiMDp40ZAQRbaOyy8OjX/gBH tJ99+5pY/tATPJIwX+kBwqP9hMNhUqkkvefOkL32KXZ6RU4dOkJnv4ucaBhr8XoeeXgXPWcP MOGLkV9sp3ZpDY2HD7P7hErxkjWsz3cxcvEas1Haj7zOhaCLiuqV3Jc9gOSwQzLKxRPHkAoz 2VDh0U+G3SK6AK6DIaeIjKZzdOa4sJszsRgvm7gFxkl5a8kxy6iyl/ys44Su421E0zSSKYG8 PCcGcwpPpovRZATZbKPAU4BFTmFx2C/buwmYXSVsfXSWvY6anLfcZTu+wjIg7mtj3zGZ1bVG iFqpve9B1ld6PsZP4bOPLoDrITupKwzx2tk4azfVIEcHZq7nlZN55ARnc5diTwzTHylkUwaM MEFX8yUkjxPH5bG4KIo4Mky0n7uAlivRMTFJUUENwjUWnhBo38dzb51jduAkURRxl9exaunc tMHxPvovdXGhfYpVn3sIt0lgapZNn5pKMB2JYbHN9AzRlIgeWWl+dAHMQ05pKTYEbJX11ETD FGYbkKa8LC5wgCmLjRv8nDh7iqghm4Yt63EZwLB0OT3HT3IhVs/mCifewkLMBpnFy9cROXmS 0+c1iutWUZafQUIoJdcGCAKZrgJSRpms4u38+6rtcyuiJunpaCJx1YBmtOscAwkv2x7bQK5j 5giMJJmx2WZ+VxNhBoZG8ZaUI0yNMxQ2cHXwGZ0Z0toc+p5HU4lGgqiSA5v5xstJihInkZCw WOZv03TnuPOj9wD3MoKIxZZ1S0klyYTFcvN0OnPRd4J10pq07gE0TSMWiy10Ne4KiqKkjSPg 2yGtBQCk1e5pOj3rraIPgXTSmlvvATSVyd5T7H5pN2dHVJbv+AJfeKCeyGArA5NG6ldVYsDP wR/9Cy83dZKalVUxlvG7f/o7rMqbfQBcI3r6eV7WnuQ3VlrvqZ3LWCiE5HBgANRUnEhCxWK2 cCfBGTVNIRaaYmo6BgYLWVkZGAWNRDKJ0WK50gKpSorg5CjhBCCImG2ZZDksKPEImsGGSQbQ SMUi+KdCJBUFDQFRlLHYM8iwmRDvQfuHaDTK2NgYyeTMpp4oihQWFmIwGJicnCQQCGA2m/F4 PMjy3R2QqKp66wJQkxFaL7RR9ug3eaZYYe+rL/PCD86gKHEK6rawHAAnm3/rD/oywwAAABaX SURBVNn8W7Nzalx88y0mxLm7P0pklGO9KgrHGavejMd67xzX6zp+nOz778cDJCb7aOqZZmX9 CjJu+0CVRnRykFMnzzAZ09AQcZatYEWOkd6xURYvXcoHceDVZIxLrU30+oFUAsG1iM1rlxHq OkXcu5kKF5CcouXMeYb9IZLJJAoCgiQhCi5Wb1uFx3LvucXy+/0cOHCAUGimzj09Pfz5n/85 4XCYPXv2kEwmcTqdPPbYY9jt9rtat/b29lsXgKaoiLKBfG8OJnuMAnOUf/zujxmWi/nNP9ty g5wKMUHGPCv61fRoG3v2NZFVs537aWfva79k7QMPUJFtu0E5n0Y0/NMBHHkrWLfEixYbZP/x SVS3B64aj8tmO8vve5zlgBYe5WzXKIpylSWoKGMzQWBilGAkRkoTkEw2crwejOK9OZotKCjg K1/5CgC9vb00NzfjcDg4dOgQK1asYOXKlSiKctdbf4Ds7OxbF4BkNGEzy5x4+01G3dAeXcS3 Xz2EKdBCzziAwtD5d/mXZ19lIALEAgxHTeQ7ZxanHecjFP/JE1g79vCdN4b43K8/xfLMacbY xhPuU7zw4+/Q/8Qfsb184T1bJqI+etrbCTDjsjwUzUCJBjh54hg5Sx+kWB7n8LlOSqpXkOzd T+M5H+FYGFNmLk5rgsGhCMUrNrJ1dQV22UT7aActcgh1aoSUpRBhnqFKKjHFQNcA/uAElzo7 Ub0NFJVBKhqiv3+Iwoxc1NA0WHOpX5N7TX7/RJAMr+v6QfYWmHg8TkdHBxUVFcRiMZLJJMlk ktOnT+N0OikpKUG8yyLOycm5jTmAZKSosJz2oUb6fB5WrttCUbaJsSkBQRAQkChYupP//Nc7 Z9L3H+TZHi9fve8qr2SVO/kvlzcklfO7eU/8DZ6ua+Dr/2lu4OiFJJUIMTY0RBRITU8QMV+/ axYMNirXNLCs1MC5pkZMZQ/ywMYpmnuHiacEMvNLqUsk6ewbA5uH1dWlSJHANeUoqQi+sUnU rDxWbixkIhDFZAQlEcUXmiSpuEmFA4wODRMH4hNDjIiZlLhmek1ztpWie1gAfr+feDxOfn4+ yWSSaDRKd3c3oiji9/vZuXMnFRUVd71et9HvCCQiCpmL6lhWVYMBCE5OItlyWZzlQNTg5jNZ jURkmuloAg1QA9OERB8+30z5Rosdm9W44EtT1sxS1m7bhgeIjXXS2DMNzDgp19BQVQVFmXFd LhpNOCw2DKKCI8uJ2W5F1KaRDTKgEosksGaXsDz7spWnFiccTXB1WGuTNY+V93lIJaK0ndiP lr8RqwSmzFzqvUtm5h/eChpyyzEYJKKXWmiT8llZ5LpLn8qdo2kanZ2deL1e7HY7kUgEt9tN fX09BQUFNDU10d3dfa8LAGw5JkYPvMHfv71n1lUzNVse5fGtS5k7jxXmOZSRoPfoa/z0YDtX XN/zbb79K0A0Ub3xST6/o4Z7cUdflGRkLUHH2eMMqZNc8kFZ3Y3zqEqYM/teozs097os5lNY lz3nWjI2ycVzbQxOjCPmNbCpLAtRvSqocGKUw/vbsDkdlz/bLk6MdIHooHxpOU4jTF7qR/OU 4NYCdPg0KgvdH/nZPyp+v5/h4WEee+wxBEHAYrFQUFDAgQMHcDqdDA4Osn379psX9DHT0tLy CRrDRcbonrZSlnt3Z/a3w/V8gwaGhzHl52MBlFiQ8ekUbmcmsclBevrHEa2Z2Ox2PDnZaPEA ipRFhlkjGJxCsmVjIcZUOIot04lxnu4sPDZG9+jcVaBkbJLutgGk3EIW5TuRBAHUFGO9rSRz luJ1AGqM4e5uBgPhuXPoWxDAQvoGDQaDTE1NUVT04XnqZDJJe3s7w8PD5OXlUVNTc9cnwp+s AD4FLJRzXE1VURQFyWC48ahRmxluIcp3GJ7pQ3TnuPOT9qYQC4Egisi3suIhCIiS/hV9kiz0 fFNHZ0FJ6+ZFEASsVuvNE34GkCQpbZ71dtB7AJ20RheATlqjC0AnrUnrOcB8jDfv460TvaQu b9QZswrYcN82yrI/Ht/6anyCg2/vpcefxLV4DZ/bXE2ws5NEURH55g/toAI9p3j36BmmYoDo YM3nHmaJNUCz30RNkfsjL4veLS5dusTPf/5zAoEZ8w+j0cg3vvENnE4n+/bt4+jRoxQWFvKl L30Jm+3uGkPG4/H03geYDyUeIRwPcv7oeczFVVQUubFYrBikj+ONi3D27XeJlq2iOtfIWOth +hxbqQqcZ3r5cmpmxTtVkjGisQSqBurAcRqFtezK7mfvoI1ty0qQb7PvXiivEMlkkunpaVRV JRAI8O677/LMM89w7NgxBgYG2LFjB8lkkry8PIzGu2vOfejQIb0HuBrJZCXDpGE1mzHb7GTY bYDG1FAbZ1sGSFlzWblqCVmpcVr6fARGh4jIOVR4Zfp7R0hllLBhRSnh0UGGhgcY9sVwFFRQ X1WISU4SVq0UZDvJyDCQynfSMzyzEXd1KyQZzFhQGe3rZnxogsSn1OGbwWDA6XSiqipdXV3U 1taiaRpjY2Ns27aN/Pz8Bavbpk2b9DnALRHr50JnCGd+AbmmMY6dG4HQIMcvDGDJzsUw0cLR 1nEcuW6i7W0MKwkmei4yEBLJ82Qycf44LeNhwE7d0myOvvIj/u7vvserjTGWLM2e54ZROo++ yY/++XmOtI0RSxmxXx4dDBx/nZ+913Zt+OB7nEgkwujoKCUlJSQSCYLBIN///vf55je/yQ9/ +EMikev4l/yE0XuAWyByqZ1DTRcwXR4G5VR5iBZBXtVyVizxMEUIY9ZSlhdmkDE8QRwQzC4q FpdS5nFSYQ3y7qTKinyJzKLlPP07y+eU33/NHS1UrH+IivUaSnyKUwfPsihbgjgUrnl0Zgh0 Nx78Y+TSpUtIkkReXh7hcJjMzEwefPBBCgoKeOONNzh27Bjbtm276/X6tH2OC4JstVFYsZmH d60kQ0rgn4wiKz03zqQppFQNNRHiYm8Qx2KNwGArJ042MzXbyFOwYYrGKV1+dQEq8akxTp84 gc9azhKLeZ6o8Z8OUqkUbW1trFmzBoPBgNVqxWazMTY2RkFBAVardd5DQncDXQDzIiAbjciX T8Eb8+tZ1vFLnv+Hw6iyg7pNO9mcZ8B4eSYqyoYrk2TJaEQDlNgI+18+yNtYyK9Zw44CO1bV y7IGxyxTcAAJf0vrVQdZYnQde59DzWOUrd7C5op8zLI4Yxt0xYYoSss7BzCue5DyyAV+0WXl 8+uvOnx0jzA0NITBYKCgoACYmResXr2an//85zz33HOUl5dfOTZ5N3nxxRf1VaBPhgSdp5qR vDNDoJvhm2cZdF6iUwzHZDxZttteBtV9g86P3gN8Ish4SkoQrLe2ru2+1ZNQlkzy78XTQp9i dAF8IohkuO/9o4o6aS4ATdNIpVI3T/gZQFXVK86pdD4krQUApM1LoWla2jzr7aBvhOmkNboA dNIaXQDzoKbiJBXQNJVEbMaHj5qKE09d7c3n1klF/LRdOM9kTEVVUySTypz/a6pKKpmc4y9I 01IkEsoHf5BKJVE+I9HuVFUlFApdcZi1UKvxaT8HmA9f+yGGsu9nictH45vN1D25FanjfY6x jgdrM+6gRA1f7zmClhVUmUXGh05z6lgAd+GHZaViSWKKgVVbV/PB1WSyj2PHJDZvLgElQldH B7acWgpzPh7T7IVC0zTa2tp48803iUajVFVV8fjjj2My3f3n0nuAu0HKR0e/iYqSjBk3KKqK oqhXWYCqqFe37rEwmnnWwr+mfSaCXESjUVpbW3nkkUf45je/SSwWY2JiYkHqovcAt80A+16b YO1j9ZiTPk7sbafqoaW0v7aH/ug0k/4o+RVLYayTsWmRtZ9/htpEF5POIrJkAIVkMEp/5wEa z84qVjKzeOVO6mNJNLMBAY1obz8dgxHqlrlxSaAmovjG/eTm5GG6B2MB3CqxWAybzUZ+fj4O h4NFixbh9/vxer13vS66AG4bhXgsOdN6ayqJeBIVDU2ws+ahRymUunjljSkeeOIZLL5jHBwM UWqcwmKvuuwEK8nkWJD82gausYQXw0xORXGZDaBO094nsMg9RVvHEGuqXaTCPto7NYqqPVcs Uz+NaJqGKIozTpUv/yQSiZtn/ATQBfAxIVmdOB1GJKy4XEacFgNJkxkjgCDMOvFipqjKS+vu Rnyz8guyhcrVDZR4MhDQmB5oZSRzEffXyOw/3U+oNAOjs5ANlbW47yRUzT2ELMuEw2Hi8TiK ouD3+8nLy1uYuizIXT/VWDAqo7S3tCIGuugLO7iJj1wc2TlE2gOoZCECWfkr+PXfXzEnTTw4 RVtrOzG8iGEfp9uD1C6vxZZtYpmtm/aJKLONK+KhcYKqnZxMmcBIANntxG74dHydDocDl8vF O++8g9PpZHR0dEHOAoA+CZ4Xm6ecfDsIoo2ypYuxAmZPJVUeE5DD0oZ8pscnSGVUsH5NGVZM FJUXMbOG4aS8fMYhrWQrpCzfDM5FFET6GL9RLy+ISJdbdk0wUVZXQ5HbBhgoWFKH12HFYrVj Ms4YTqeiIYLRJKASCYSIKXe+RHu3EUWRNWvWkJeXRywWY8eOHXf9QPwHpLU59N1zjqsx2X2M 9mgZa2pzZjw/X4WqKCTicQxW6/xBLjSVVCqFIBqQ7mD8rzvHnR+9B7grCGR6l+E1BwhdpxcQ JQnz9V5+AEFENhjv6OXXuT6fjkHjZwDJZKV4sX4g5V4j7QVgsaTHCRNRFNPmWW+HtBbAQh3E Xgg+WG/XmYs+B9BJa3QB6KQ1aT0Euh4dR3ZzbiiFaLBRtWoDVd5M5I8yelAjdJxopHkwgCFr EffdtxyTf5gRKZMS14dBBBP+fhpPnGIsmARBpmj5JtaWGOkdiZKfl4PJIAIqY93nudDWSyCa REXEYHaweNlq6oqybh6p9h5henqaPXv2MDExwebNm6mqqrrrgbJBF8C8TI8nKF+3gaz4FC3H 9hCt387Ksjv1yKwyeqGRjoSTlQ3lxEebee+4m605EwxKhjkCkG1uapY1UJbSINzHyZEpKLQy MOzDnZ2NyQAwyummEXJrFpMviWgIqMkQgyePkZnzIEU38axyL5BKpTh48CAAdXV17Nu3j4KC AjIzM+96XXQBzINsyiCnsJB8vGSbRBov9RIuykIMDdPdO0RcclBcVkaOw0jY109X7zBJyUFJ ZQXZNgOBwX5SRhjpj7JoZSnBaYnC0iKKvC6SGTG6j/lJ5GjXOMQVjVayc4wEJ4cYnoigJGel uPKrh2XLs2g6ewZfOIGKiNGaSc3qLXg/BS8/zLT+4XCYLVu24HK58Pl8jI6O6gK49xCw2S0k lRDRkJ+uE42EzPmYlT5OTkVY21BGy8FGIi4v5lQ/p05EWbtxFZ2H3qHf7SHHtohFGPCWe3jv wB7OhOKIBjtLtjyIOdZ51b0UJrrPcuDoBRRbDrm2CKptxl14+NJpXu8L8dBTK/E37uP91mE+ PDqgkgj7Ofv+m/gnNrBxTdk9GWh8NqlUCqvVislkQpIkMjMzr8QPuNvoArghGkpKQRJFEolR plNlbLhvBdaEj/ePtRDob2bEvIzHN1chxQOcaDrBWCAOJgOV9VuodVmRECCnkgceKiKeUhAk A1armcjFq+8l4iyqZWdOBYIoMN56GrPbDChYvLVsr6zGgRFb/X08WTtzTDLR/R7HDdvYdDn+ tGy08Gk4KyaKIoqioCgKmqahKMqCBfDTBXAD1GSEluZODPbF2M0SmjJGOKYgx8MkEgqSJQsp OkEoUY41Nk00quExSJjN2eRk25CAeHCM5vNnmQjPHvDImBJhlOqiWdcEJIMJi5aiu/kUrT6J tVVZgA9RNmGzmpEQkMwpBoYVShe5UAqrqRIzyLiTU5oLiNlsJhKJ0N/fj6ZpXLx4kerq6gWp iy6AefAPn+Dtv2nDbLBQUreWDVUlOEwpirLP89qPvkdcyqBu3X3k5udR4XyTn/3zd0lKmSzd dD95DpngrLIkg4VsjxfzHBsgEc03yMScSbXKeGcTe98/g3XxClY11JJtN87jETrK8Vee5VXp g2gqbwFgzVzM555+lCIzXDj4CyxLPk+R2szBFhObNpd/zJ/QR8NisbBixQqef/55pqam2LRp E9nZ88VJ+ORJa2vQhSQ6eJFeOZsaT9aNE6amGZ5Mku3KwvAR1mJ157jzo/cAC4TFW07NrSSU 7eTnftK1SV/0nWCdtCate4APViDSgXRyBHw7pLUAgAXzRnC3UVU1bZ71dtCHQDppjS4AnbRG F4BOWpP2c4D5OPTc/2LAez8Pb1mOQxJQpzt44dk9WFd9nifXzu++L+zzIbndmAElESUQCuPI ysZ43VPuc9HUFGNdpzl07BwTEQ1X0RLu27SM+PAFErallHs/tPAZOv0mrzZemslny2bL9s9R lDFAR0cmDQ0LF3n9VtE0ja6uLl566SX8fj/r1q3j0UcfxWg03jzzx4wugHnIzCrCb4sxHUri yJLxd4/gqC7lRsaWA2fOYL//fryAmkoQCoWwZNy6ANR4lJGJCMt2fZnFToH+U6fo8wXJ1bjG IW7Biof4/RWAptB7qZlkNIHmuDbdvUosFuPs2bM89thjeL1edu/ejc/nIz//7otXF8A8iBY7 bknENx0izy7T5TewOMfKYATQFPrPvc+Bpk6ihhw27NgEnSd4p/EMakcH2RWbeLw+l6mpAG6v xvRYF0cOHKHXr1Jav5EN9YuJdrzH4Z4YwZFBDJ4att2/EY8soKlJpib9hCSRiVAcY740b3Ds eGSK0NQkPW3nOBc0samuCNBIxCLEkilMssy9fPw3FothsVgoLCwkMzOTsrIy/H6/LoB7BsFE UZGV1v4g5SaBVIadLCszAgi1c6LHwq5nfht7bJADB85Qt+NhHkyar/QA4bFBwuEIqVSKS83n cTU8xrZ8kbONx+kadJIdDWMtWsODOx+g78JhJidj5BXaqK6t4uSxRt44pVJYs4rVnizGuq+t 3sXjb9MadLK4cjkb3INIdisko/ScOolUkMGastx7+mSYqqrIsowkSQiCgCRJRCKRBamLLoDr YHR7sZ9uptvtxG7KwmKYnvnH1ASpgircZhlVzseTdYrwdZzLaZpGKgmenCwMphS5GVmMJaNI Zht5OXlY5BQWu+1yIy9gdhaxcVcRGz8oQJ1/46pu6xepA+KTnRw4KbOy2ghRK1UbtrN68b1v N/HBCx+Px7FarQSDQTwez4LURRfA9ZCzqCmY5u0LcVatq0SKDcxczy0j89hpLmTXYkuMMhgu YF0GjOKjp60fMScLx+XjW4IoYs8wc7G5FS1H4qIvgDevCnGeYc1U5wF++k4zs/elRVHEtaia +tq5aUMTAwz099DaGaR+5w5cRoHgLBGqqQTT0TgWqw2SUWKKyL00PbDb7dhsNo4cOUJubi6D g4Ns3Ljx5hk/AXQBzIO7uBgrAtbyJVTGIhS4DUjBAkrz7WDKZM1aP6fOnyVucFO/aQ1OGQy1 S+g7eZbW2BLWL86ioKAAs0GirG4VsbNnOdeiUVi9nEUeBwmhmBwrIIg4nPlYDDKZhffx9Yr7 5lZETXHp4ikSVw3ox3tbGErksfmhteTYZ1ZOJMmE1WqYyZaIMDQ8RkFxGUJwguGwgXvJo6Is y2zYsIF3332XtrY2tm7disPhWJC6pLU59N1zjnuHaCrRSAhNsmM133g5SVHiJBISFsv8bZru HHd+/n9VxL5h9PtMWAAAAABJRU5ErkJggg== </thumbnail> <thumbnail height='192' name='모션-문열림' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO29eZQc13nY+6uq3vdldmAG+0KAWEWRIMRNu2SSokzJsmlLdhJlsX3svBy9 LCeOk6c/HCc5Jy9xkneeX5TYTmwdxbZIWxYtanG4izsJgNgx+9rTs3T39FLdtdf7YzAD9GBm gFm6pzFTv3NwpnC7qu6tuvere797v++7gm3bNg4OWxRxowvg4LCRNJwAaJqGoigbXQyHLULD CYCDw2qR89O8/PLLjIylMazFzykUilX/d9WhXA4OdSEYbcLj86FlM7w/PkAhU8QXCpEeuErr 9l0oYojiWA+dHU3krAAuPef0AA6bi1AojG3ZSN4A7W0dRAIe4s3tdHR0kJ1IsXP3TvJlDZ/L pqmtHaHRZoE0TcOyLHw+30YXxWEL4PQADlsaRwdw2LzYFsNDA/jDCfKZSZpb25iYmCQS9hNO tBP0Sk4P4LCZEYhFo1Rm0gSTHRRKZYJeF/6Ah3JldprI6QEcNi22bdLXP0hbRzuTo/0E/T7K ho2iltFcJs0xRwl22OI4QyCHulMsFm9/Up1whkAbQHZqnKIKYZ9IWdHx+IKgy2h4iEeCBIPB jS5iTWmkQYfTA2wAXq+XfKHAQPclXn75ZS73DNLSvh3R0ikUChtdvC2F0wNsAHJJRrBh+679 uIJJWrd1MT46iOCNgukYAtYTRwluMEzLRBKljS5GTSkUCkQikY0uBrAFhkCWZSHL8kYX447Z 7I2/0bjrBEBXy/T29iOXCnR39zCdy9/2mgbr5FaEZRoM9PVRrij093YzMTmBam50qTYPd50A VAo58qU8kxNTnDv7ARev9m10kWqKoZUplvIM9A/y4YcfcunCBSr6Rpdq83DXCYBlC7hEEb9X YmhwkPOXrm10kWqK2xMg4PXS0tpMdjLFm++eQxTu3h6t0dj0SrBlWZTLZUKh0Lrcz2HtNJIS PD8NWiwWG2KsbBgGtm2jadq63M+2bVRVxbKW8JFzqDuVSmWjizDPvACEw+GaZFCcmmBoYgo1 L9Nxz2HaE8t/iWvRA0iS5PQADUbD9QC1QikVSY2lMGSDlv3VPUwpN0H3QJpINEi5rHHo3kO1 Lo6DQxU1F4BoawuxyWniO5IEfe6q3yzLBmzKmkVrPIhm2AimiW3bGIaxLvlbloVlWet2P4e1 00j1UXtTCNOkXCwTT7YC1T2APxQhEpFpaUmSzZdpcQvotoRlWbhc61M0y7IQRXHd7uewdhqp PmpeimI2y/DgEAgufNEmEjepGm5vgL179wAQicRqXRQHh1uouQDE2tu57/778IXCxMNb077H oXGp/UKY6CIU8IHkwiUKVT8Zapmr13rITE1wtaefBpiFddhi1LwHKOeypDJZgpEEbne1oVc+ O4GiGUzmZVpCbsqGjegowZueRqqPmguAILlob23FAkoVnWjAM/9bON6MNzdMyOtioqBysE3A cJTgTU8j1YdjCuFQdxrJFKJKB1DLRa5cvkwuN80LP/gRo+kp1EqJq1evkJ7MYmGTyWQp5vNY QLk0w9WrV7na3YcFTE+Oc+368Ry6UuLdd97htRdfZrpYruvDOTjcjqp+yBsIYCkKtg3Jphjl ioYZ9oBtUyqWCAdEsplpXN4gmlZB1U1Mw0Q3DYozGYrFEtmZaueTSm6aQqmChI9wOLAge5uh vl7CsTiT2SIH9u5al4eybZvpfJnm2OZ2LndYO1UCUC4WkbxuKqpOsSjjCxQw4l4EUaJSkZFs Py+/9CLBpi6e+dLjlPMZpiZVPP4IblGirOkkYuHZ9a7rEz7htk4O6CKKrCBYFog3Oh05n2E6 O0NF9NIccq2bEnxlaJofvtPLN75yylGCG5BGqo+66ABXPniLKdXFffedIOC5IXMVucDQ4BD+ SAxZVjh4YB+GvjYdYKak8O++8wb/9JnTxMN+RwdoQBpWB6gVyeYkA/39WAtEzR+McPDwEXZ0 dnLo4D4WLBOsGMO0+P2/ep9f/NQR4mH/2m7msCWoiwDksjO0tySQldr58tm2zfdev8r+7QmO 7G6pWT4Om4s6CICBIPkA6RZrUF0pcfXKNaYmJ7jWO7imleCLA5P0jmX54sMH11Zchy1FHVYj RIqFIk3JCKpmEPLeyNLlDRAJB5iRKzQFpVUrwbmSwnf+9wX+z6+cwrYsjJu8v5ZTgsemi7x0 ZpDHju+gs6UxxqRbgUZSguuyHOf1iPSmsxw57q1Kl3NTTM2UaIqFSM8o3LPKleC/eO0av/Sp ozTFblV0F64E27bNeKbEc69doazofOLkTv7ghXOcvreTzz2wF1G4VRGxbZtSRUMSRTxuCVEQ ENeqsGxhttxK8NWz7zA8mefoqYdpiy6vnK5mJdgwLVzS4qO5m2eBxjNFnn3lCrlihS8/dohD O5vnr/+zly4yNlXk73/hI8RCvvn0i/2TvPBOD4ZpIQCqbmJZNm63RCLsJxr0kowGSIR9JCJ+ kpEAyagfSVy8PLZtMzpV4INr4zz+4H7crpWPQm3bRlhEUO8WGmkWqPbGcDOTDE8VsJEILdAB 5rBtG8u2qxqNbpi8eXGEBw934nEvHy1tqca/kKtD0zx2YgdHdrfecv0vfuoIF/on+d1vv87P PXqIkckC711LcaAzya989hjbmqsrTNUMciWFXLFCrjj7ty+VY2qmzGRO5kBXkmN72zi6uwWX JKIZJh9cG+flMwN43BKf+eieFTV+27YpljVe+3CIy0NT/B9ffgCvuzG+onczNe8BLFPn2uWL XO4e4jNPPE7Ye6sQpEYGmM7J3HPvvdjGbA9QVEz+0X/5Mf/2H3ySzpbo6vNf4TpAQVZ59tXL 7N+e5P57tt1W+BbDtm26RzK8dXmUq0PTxEI+CrLKyf3tfPzETpLRhSviS6PpJm9dGuHNi6MY psWpw9t54J5tRILe21/coDRSD1BzAZCzKb7z7Avs3neAB04/WKUEzzEyPASWSdP2XaArqKqK 1+uddaC83t0LgoBlWXd0DLPjzDkFWFVV/H4/kiRhmrNxBddyPHfvxY5t28a27arjmZJKJOBB FIUlz5kb0iw8PtOTZiid52P3bqc1EVr1e1h4vFHvQhRFSqUSwWBw0d9u9z5W2haWeh9zfxvC GtTQFKbzMm3NSccadAuwJXqAUqlUFYzKNHRsQbrteH1OANzuxfWFlTIXZMvrvXuHDJuNSqWC 398YK/V16wGUYh7D5Sfk92AZGv39/cSbWpmanKK9NclErsS+XV3ouo5lWevWYC3LolKpbPpt h+4misVizQKxrZS6TSNIbs+8JagguYnHIhSy0zQ3N9OfStOVCFExhfkCrdc039x97uZpw81I o9RHzU0hDK1CX28vQ6NjqOqsLZCplBgam8IfDDI6NkZTOMh4rozX2RvCoc7UvAewdJV8UcZS DDr3zMYAcvnDnDxxDIC29g4AOq+f7+z94FBPai4AhqZRKpZwC25okG7PwWGOmg+BbMmFz+tC 9Nj09Qyw4XOuDg43UfuwKKJES1sbbsFNOB692VvSwWHDqXkP4A+6eOX7P+T9d86QV6y7b08m h01NHWaBdLyRMEpZXpVdjYNDLan5EEhyhfjUpx9FE30kQs5qrENjUfMeQBAEAqEQk+OjmNct I2xTp7u3H0XOc+HCJVKpMS5d6bnFad7BodbUfhpUVxkaGsKwRYTr4iZIbsJBP+VSkY6ODobT 11eCneC4W4JGqo+aC4AoufB6/ITjQXTdwOuSsAyNzPQkLa3tTE9O0NWaZHpGZn+bs0PMVqCR 6qP2AiBq/OUffoeuRx/l6c+2zaa5PNx7ZHYluKVlNoRJsqnWJXFwuJXazwLpBq6Aj0gojEty ZoEcGouam0PPTE+gCV7iET9jY2m6du5YVuoch5jNTyM5xNS8B4jEk4x0X+CDcxeJJpqchTCH hqLm7VGUXGxrbyGfl/H6nHUAh8aiLh/kUrEERoWS0hhTXw4Oc9QtOnQmXybi99z+ZAeHOlIX AUin0jTFgszIaj2yc3C4Y2ouAJapkc0XyJZUkktslD2RGub8hUsYjimEQ52p+UJYbmwQxRVl W2SG9IxMZ/LW6UjNhJZYEM20Ea8vk+cKMv/zxxf46qfvJXo9CtpSgZGuDE0zkavegC8e9nFk VxO2bWOaJrqu0zM2Q2q6WOtHviN8Xhf3H2xHYPHgT3PH49kyPaPZqms9bokH7mlHmgvutIZg UXcaSGu5QFcrPZ6rj9sFwFrp8Z0+69z5lmXVXgBiHTs56othI5CILR4SsCUZJ50t4ZdAM2cf ShQEbJjfM2BhFIHq/y8erXnuYW+mUaI6CzC/l9pcxcz/tuBZF5ZZEK5fu+DcWh/X4l43N8iF xystw0ryns9/biGsWCze0lg2AsMwsG17XQNjqaq6bgtrDmunkQJjzfcAtQpUpJQKZAsymlwm 2raN+BJ6wBy1WAmWJMlZCW4wGmUluOZDoOLUJBe7+zFkgyOxlioBUOQ8fUPjJBMRcoUKB/bt qXVxHByqqLkA+CNhLFMn3pzEJVWPw3RVQakoTBfctIc9jj/AFqGR6qPmAhAIR9i1YxfRpmbC gWpTCMnlxu/zEAl4mCxoHFjlFknL4fgDNB6NVB+1nwYdT/H2W++wY9ce9hw9UbVTZCCS4NDh RK2L4OCwJDVfCAsl4nR2bifelCCwxBZJDg4bRc0FwB0Ic+DAHmJNTYQXCIBtGQwNDlKWi4yM pZ2ocQ51p+ZDIK0sM1NWCIR9uBZsCjczOUamqGDYGQIuqBg2gqMEb3oaqT5qLgCVYgFd08hn p8knmogHb1iEev1BJCNHpWIjGxbN2wUsy1GCNzuNVB8NsUfYzTgukZufhnWJNNQyvX2D6LrC +fOXKMplLFNnoH8AuVzBBhRFQVUUbEBXy3Rfu0b/4OiS43dDLXP1yhXOvPc+2WJ5ibMcHDaG qn5IkCS0QpZs1kc6PYbbH2Jb0k+hmENWYfeOJGOjabz+EK1tTWTGR7l0+QoIHjo6O/AtsgGe UsgxOZ1FMF0Ew7caw+Uy0/gDfqZzJbZ1tN7yu4NDLakSALVSwbQN5IpCqVSaNZBrDuLzBVHV CoJe4Qd//X1CLbv48hOP4Y82sWtnJ4FoM7amIFsQCAaqwp/7IzHisRg+txfRtqs2yTDUMoP9 /QSbWglJlqMEbxEaqT6W1QF0XcfldiMsOF4pfRfPkirofOS+kwQ8N2QuP53myrUewk2tGKrG oSP3YuuODrDZaSQdYFlV/GaT5LWYJwfDQYqjI7foCdGmNk41tVWlaavOxcFh5dTFJziXySJh UCzr9cjOweGOqYMAWCSaWxE9fuIL9gewTJ2hwSGUisxYespZCXaoO3VYjbDJTOWIBjwUKxre m/wBLNPELQn0DY0R87upGE2OErwFaKT6qMty3HhqDNUb4ugCW6BKKcdwOkNLIsz0jExLp4At OSvBm51Gqo86lEKio6OZ4ck8M7JGW+yGL2g40c6pRHvV2Y4S7FBPaq4D6IqMrGqkp2YI+R1z aIfGog6BsQwUQ2DHtrYlo05kJlJcvHwN09GCHepMzYdAulriw7NncQcTnDy9+Dll3aI9HkAx Ya6PKKs6z75ymZ99+OAtrpQLGZnMMzVTbWcUCXrZu63a22xsqsBETl7tozQ0bpfI4Z0tDRP3 6G6h5gIQjHfw67/5m8uekwgHGMsU2SvZqLqJqqqopkDvWJZ8sYxLsJaN9DU6mWdsulR1z0jQ S0fch2VZqKqKKIqksyUGxmdq+bgbhiQJdDUF8bilO4r0JkkSpmmu+Xg1keQ0TaNSqSwbQW49 IsAtF/lu7m/NzKFLpdJ8pivBCYy1+WnIwFjrzULbG6WYx3D5Cfk9YNuMp8ZItLSSnc7QnIyR ycu0NCVQFAXbtvF41ieU+txXIBBYPCyjQ/2xLKth6mNDJmMt08Dtgv7uHoKRCBe7+0mGfKiJ JJKzDrDpaaT6qNuWXb5wdPbrD1iGQu/gOJFwgGwmh9ctkiuUkRz9zaHO1NwlUi/neeWN97A0 g5OPPEJzOHA9ZLmBKErzys9cDE/HJXLzc9eYQ68HlWIeywKvP0bkukeYIAi4XNVKruTsIeyw AdR8CBRu7qC9JYYkaeRnGmNzCgeHOWreA8xkM3TtPYBoQT4/gxULO3sFOzQMte8Bol7+/A// mFf/5nWEQMxp/A4NRc3bo21BKBpFlou4Xc4436GxqPkQSHKF+MxnP44mekmEnNVYh8ai5j2A IAj4AgEmUqMY100jbFOnu7cfVc5z4cIlxlNjXLrag+VYgzrUmZr3AIauMjw8hGEJiOKsvAmS m3DQj1wq0tHRwXA6TVci5OwQs0VopPqouQCIkgu/L0QkEcDQdbwuL5ahkZmapLmtjczEBF0t SabzMvvbBPR12iHGsmxEUXBMIRqQRqqP2guAqPHcf/82XY88ys9+9pHZNJeHe48eA6C1ZTYc YrJ5ffIryCrff/MaxbLGrz113/rc1GHTUochkIHk9xIOhWo6C6TqBq+cG+Kn54f5xMmdPHx0 xx1dp+kmMyWF6XyZ8UyJiVyJdLaEYVSbcouiwL7tCY7tbaOzJYIkVqtPlmWTLVaYzMns255w ZrzuEmpuCzSTmUQXPMTCAVKpNJ07upbVvFdjC3S+b4LvvnKZI7tbePL0fvzeG2YWC22BLNtm fLrIxYEpLvRPkJdV4mEfTdEAHU1hWmJB2hIhPO7qBqwbJleHM1zon2B0skB7U5jDO5vJFSsM pmeYKSpEQz7CAQ/T+Qq//sX7iIcbw+a90WgkW6CaC4BlGpx95y10d4D9+w+SiAaXPX81AnC2 J82u9hixRaZZbxaAFz/o55Wzg8TDfo7va+PwzmaaY8EVuxHqhkkqU+TSwBSxkI+92xIkIn5c 16Njn++b4E9fusivfuE+ulqjK7r3VmBLCQDA+MBVzvdN8vAjp6uC4y5GLa1BSxUNtyTivU0Z 1oPxTJH/93vv8+Tp/dx/z7aq3xTNYKak0LIK4QMolFX8HtddO8xqJAGoiyoul8pgVJAV47YC UEvm/BHqQXsyzD/7xY/x+997n+GJPC3xIL1jWcYzJTTdJOhzEwl6+TuPn8CzgoZ8vm+Cb//k PAGfm1/53HF2tcdq+BSbn7r0ALn0ID96/Rw/+8Uv4HMvv/Y21wNopsAfvnCWX/ncsTWNpTfa H8AwLX7ybh+6aXKwq4ltzZH5vZKff7Ob/lSOX/vifXjdy38YbNvm1Q9nlfzfePp+CrLKH/3w HPfuaubJjx1YkRBtNI3UA9TFNi2dSpOM+JmR1Tu+RhBANyzMu3x52CWJ/MyD+3jqoYMc6Goi 5PfMRyp48vR+ju5p5T89+w5lZenI2ZZl8xevXeFcT5pv/PyDxEI+ulqj/NZXH8Ilifzun7zO YHpzRruoNXUIjKWRzRfIFFWS4cXH9ZOpYc5fuIxxU1sPB7z8k2dO0xRtDOfpWiAIAp84uYsH D3fyf//ZW5QqtwaG1A2TP3zhLLKi8xtP30/gphkut0viqYcO8vXHT/Dcq1dQ1MZYXb2bqPkQ KDPczYfDebxKjq4Tp+lM3joUGRkZxiPYhNu6kEwNwzDweGa/lHPFW+2xZVkoikIgEFiX+9Xq +GxPmuff6mHPtgRyRaei6qiagVzROHV4G5+9fw/i9Z5jo8u61uNisTg/JF34GyweC2ix47WU Ze5vzTXSWMdODnuy2HSRjC3+NW9OxJjIybRIoBr2fGFvDpJ0JwGTFjteyEpf4kryWkl5Fh6f 2NfG9pYoxbJGwOfG73HhkkS8bhGXJC76TmpRtjttRGvN73bv406OV9suqu4x1wMUi8UlY3fW Eycw1uanIQNjhcPhmmSglIrkiiW0UplI2zbiS+gBc9RiHUCSpHWdBTJMi5mSwkRO5p6uJice 5ypolFmgmg+BilMTXOjux5ANjsRaqgRAkfP0D42TTETJFSoc2Le71sVZNb1jWc71pBlMz1CQ VSJBL7mSwi996giHdq6TJZ9D3am5APgjIUxDJ96UQFoQ+UpXFSoVhemCm7awh3KD+gNc6J/k L1+/xuOn9vLw0U7iYR+iINA7luMn7/Wxf3t8Xcq6VdhS/gCBSIw9u3YTSTYTWRDmXHS58fs8 hAMeJgoqB9sEjHXyB5hjrf4A/akcf/7KFX7rqw/dEqb94I5mvvO/L6LoVl1Xme92GskfoObr ALnUGG+9+TZXL14mU1SqfgtGEhw6fIjO7Z0cOrCX9RpK27ZNsXzni25LMTUj8/99/32+8ZVT S+5RcN/BDt65PLbmvBw2hpoLQCgeY/v2bcSTcfy++myRpGgG//G7b6/pHoWyyn/487f49S9+ lObY0hasjxzdwZsXh7EaYAbNYeXUXADcwQgHD+4l1txMZIEA2JbJ0NAQZbnISGpi3fYJ/umF EU7sbbv9iUug6gb/4c/e4plPHmFn2/LGZrGwD49bYjK7OXee2ezUfCCmlWXyZZVA2IfLVS1v M5OjZAoVTCuDX4KKYa95n2DLsnnt3CDf+MopDMNYlRL8354/w2PHuzi0I3lH1z1ytIsXz/Tz 8x8/tKoybzW2lBJcKRRQVQVV04kmmogHbyiLHn8QycgiV2yKhkVzp4BlrU0JvjY8TWdLlHhk dtV5pUrw+1dTADx6fNctK4dLcfJABz94uxcEcd4pxmFpNloJvjw4hWFaHN3TWnsBiG/rIr6t a9HfgtEmjp1oqkpbyz7Btm3z4/f6ePzUvlVdr2oGz756mX/xtYfvuPEDeN0udnfEuTQwxbG9 ravKezOh6gamaeOSRFwuEXEF77IebG+O8F+//z4X+ycXCIBtMTI8QlNLKx6fi8Gefgwk9uzd jWRpKJYLv0cC26S/tw8diT17dmNoCoZh4vcHb5nrN9Qyff1DyHKZnQfuIRGunXVnrqiQyZfZ s2B3yDvBtm2ee+0Kn75v9213pVyMR4/v5Idv93B0T8uKhGezYNs245kSL54Z4NLAJEGfB8O0 MC0Ln8dFLOTjmU/dSzKy8da9kaCXb/z8g/zk3b5qATDLGRTL4i+f+wFPPv1ZTNuiMjNDptBE KTONbVu0b9+BFxkp0ERYVFBUhcmxIc5d7OHzn/s8fqlappTiDBPTWQTTRXCRxj+TzeAL+Mnk SnS0t6zpwV46M8CnP7pnVdempotcG8nwC5+8d1XX7+mIk86WKFW0VQlQvTAtCwFhVX7Qr58f ZjInk4j4SYT9xMI+miIBrgxN8dLZQTxuiU+e3MUzn7x3fiho2zZlVacgq0SDtzdvsWwbAVb1 EZmbibuTHkcSRT5/al+1AEjBJsZ63+fQob24PAH2b08w3r6PpFclL2fJmkGixQIVwaL33FsU xQCPnL4fuaSya0fnonNK/nCUWDSK3+1FtO1ZT5frGGqZ/t4+Qs2thCRrTUqwYVp80J3iX37t 4apr70QJtmHW++yzR7BMk5XvbTnLRw+28+7lUR49fmchWeqNZdv85+feQ9EMnn7kIPu2J7hd UzFMizcvjfHiB/2c3NfG/s44uYJC31iGbLFCrqjQ1RLh6z9z7Ibvhm1VhZXxukSao/759OXq 49lXr1JWdH75s0dW9GymZfNHP/yQx4533bI/9HIs0AEEHvv052/6b5wkIi4pwP6jH60685OP PzV/nDh+bMkMJG+QkGQwliuzTTdx3+QTLBcLaJqCpqpMaRrNnQL2KpXgD7rHOLSzhYC/+ut7 J0rw6+eH6GyNsrsjuaI8F/Lo8V383nff5rGTu26JG7TR2LbN6+eGaI4F+fwDe3nu1ct876fX +LnHDrF3W6LKbNi2Zxv+GxeH+dE7fXzkQDv//KsPr9tq91L1kc6WuDaSoSni581LYzxy7M4+ JIZp8QcvfEBXa5SDO1Y2ili+lUlu1uORA6EA8lj2lnn+aFMbpx6qnq9fjRJs2zYvnenn64+f XPG1pYrG8290882//dgqcq4mFvKxZ1uCf/UHr9CaCLKrPc7ebQl2tkXxeVw11Q3mQkEuRbZY 4W/e6+Nf/a1H8Xlc/NoXP8p4psj/evEimm7SlggxU1KYKSmouonHJXKgq4nf/uWH6zKks22b Z1+5zJcevYe92xL8zh+/xu6OONubl7caNS2Lbz3/Ac3RAE88uH/F+dZlLiqXySJYOsWyTnAF USG6RzLs2Ra/7dd0PFNCFEVa4svHHDrbk6Y/latKuzYyzdOP3ENgnVapv/aZo5iWxURWpmc0 w5sXh/mfP8ry0NEufuaBfetuOm2aFq+dH+bH7/by4OFOvvCx/bcImmXb/PGPPuSZT92L76b3 354M842vPMh4pkixrBEL+YgEvVXn1IuhdB5Z0Tm0sxlREPj7T36Eb33/A37raw8vWR7TsviD H5wlGfHzcx8/vKp869BPWyRa2hA9fuKhBcMTU2doaAhVKZNKT93SQ7x/LcVP3utf9u62bfOj d3v59H23N6VuigbY2Rat+vfUxw5w6vD2lT7UskiiSEdTmEeP7+Trj5/kd/7uJ5jMyfz+X72H bpjrkodl2bx1aYRv/o9XmZqR+a2vPsxErsS3f3L+FsemNy+MEPR7OLJ78Sna9mSY/Z1JWuLB DWn8lm3zpy9d5Oc/fnhege1qjfLxk7v4oxfOLuqoZVmzQh30efjKKhs/1CUsisnlMx9S0jR2 Hz5O003+AIamMDkxSU5WiPndJLbtBP3GTvG6afFvvv1T/tbnj9PVsnhXeGlwmuffuMY//cXT i2r/N/sEbzQvnRngzYtj/MbTHyUWWv2wYjCd549/fJ592+M88eB+woHZgaptw3dfmTU6/AdP nEAUBQpljX/3nTf47a89VBUyciMplUpVDkoXB6b46flhfvWpj9xy7n/76zMc6GrmkaOds1Ot WZkPro3z3rUUR3c186XHDt1WkV+OugjAi8//AM0X5rHHHsF/U8zNYnacS71pmpNhSqUKh44c wTaqPcLGpgv8/vfe57d/+ZFbvk5D6Rm+9fwZ/vEvnF7S02yj4wIt5OrwNH/0wntqdOoAAA2e SURBVDn+7hMn2Ld9dUr35IyM1yURXSQUpG3b/PCdXi72T/IPv/wA33r+Ax4+2sWJfe1rLfq6 cXNcINO0+J0/eZ1ffeojtMZvrSNFM/jXf/I6O1qjdI9kaE+GOHW4k2N7Wtdl2FqXwFhXz7zN 0MQMx04/Slt0eV/QxVwiXz03yLWRDH/viZPz49vpfJl//6dv8o9+7hRtiaUbd6MJAMyW/b88 9y7H97XyhdMHkGpgPvHah0N8/41r7GyL8RtP37/u918LNwvA6+eHGJ7I80ufPrrk+dP5MlMz Mvs7k+s+u1ZzHUBXZGRVY3xqhtAqJfbhYztQNZO3L40CszM3v/fdt/l7T5xctvE3Kk3RAP/y Vx5BEkX+xX9/iatD0+uexyPHdvCbT9/P1x8/se73Xi9U3eCFt3p58vSBZc9riga4Z0dzTaaW 6xAYS6esw87O9iWjTmQmU1y8fA1zib5IFAS+/vgJvv9mN+OZIv/xz9/mS48eWpXJQ6PgkkS+ 8LED/JNnTvODt3v4f/7iXQoriJx3J+xoizXMuH8xekazfOIju4gEN27lvOYCYKhlLp4/T8/A yJL2/mXNoj0eQFlmgiTgc/O3P3+cf/6tF3noSCfHN4nRWTIS4BtfOcXpezv5z8+9g6o1hplw PTi8s5lPfWTXhpah5jrAXOAiYD4m5kLkfIaxTIm9u7pQFQVVVfF6vQjC7B5fc9dZloVqWPg9 rlvSbz6G2dXGOTMIVVXx+/1IkoRpzkrZWo7n7r3Y8dzzrvR4uWBOiz3jnRwvV9aNfBelUolg MLih72Pub80EoFQqzWe6EpzAWJufhgyMtd4snHVRinkMl3/WnsS2SY+nSDS3kM1kaUpGyc6U aW6Koyg31gHWg7mvQCOsAzjMYllWw9THhrjlWKaBJNr09fQQDIW5eG2ARNCDmkggSY0VFsVh /Wmk+qibyaIvHJ23JrQMlYGRNJFwgFwuj9clkC8p6xYWxcHhTqm5GOrlPK+++T6WanDikYdp DgeQvEGOHzuK5HLR2m4hSeKsC524NpdIB4eVUgen+DymCV5/hMh1jzBBEG6M8a8vbjRIj+iw xaj5ECjc0kF7SwxJMijMlGqdnYPDiqj5d3cmm2H77n3ssCFfyGHFQvVTPBwcbkPte4Coj7/8 k//FGy+9gRSIOY3foaGoeXsUsNFUjWwut2pncweHWlFzUwjLMikWZpDLJm1tzbd1CazlTvEO jcGW2ifYtkxKhRJT02nK1w29bMtkdGwcU1fo7e2jVJihf2h03YLjOjjcKTVXgi3TIJeZJFcR 8XuvZycIYFsUstNEIlF6RsbZFgtQ1htzhxiH9aWR6qPmAuD2Bjh47zGKxRKGYSG5JWzTYCKd oq2tlanpceKxEBO5Moc6BMwG2yHGYf1ppPqouQ5g6Hl+7//6T3Q9+ACf+8SjRG4THs/RATY/ W0oHEATQVA3JE7ht43dwqDc17wHKpQKFQgl/JI5HtPEGAstKndMDbH4aqQeo+UBMsE36+/sQ 3W5iyXYO7G3MwLEOW5OaD4H84ThtMT+likVX17Y1BTFycFhv6mKZEAhHwdIwlgr74OCwQdRF AGzbxjIdQwiHxqMuAlAuydimgbpOgWEdHNaL2guAbaOqZTIllfASGyzks5Nc6e7DckZIDnWm 5rNAhYkhsmaIfW0GMyWVttit4TAKZY2WsIeKCTcHQylVNJRVBoryuCUiCzZ2kBWNitoYS/CL IYkC8fDtw4WomkGxcnc5jwpAPOKviuBtmBYzJWVd84mHfLeNtarpJoXybBS+mguAJxTFZaYx RB9B3+LZRfxuUpkS+1ttNN1EVVVs2+Zv3h+kPzWzqnw7kiGeOr1nPjCWKIq8fmGMS4PrH4dz vQj53Tzz8Xtwu25sMLdYkKdzvRO8cSm1waVdGaIg8AufOEg85EPTNCqVCqmMzF+90bNuRpCC AD/7sf20JQLLBsa6OpzlxbNDs9fMLYQVi8UlY3fWEycw1uanIQNjhcPhmmRgmQalkowN+ANB PO7lO51arARLkuSsBDcYjbISXIfguCXOnvuQs++eobJgFsjUVfoHBinLRYbH0o4/gEPdqbkO oMkyumbidQfw+b3YlolumFi6SjaXIZuZoazpJAPuNe0TvBSOP0Dj0Uj1UXMBCDVv4+RRm/OX BzA0A6uY4pX3LyFaGrGWLtwCiLbJVE6jebuAtcp9gpfC8QdoPBqpPupSionREQSPFwEQJTeZ qQkSiSTRpnYO7lj7PsEODqulLgKQbG1lvGcUy4ZAtI0vffFpNAvcHmdmxmFjqYMphE1FLqNr GrphoRUnePYvnuXixQ8ZnsiiKgqWZaJqeu2L4uCwgDr0ACbFoorX4wbBRhBdeN1uLNNEzk9x TS4QDbgolRT2Hbpnfi1ivdYk1vt+DutDo9RHXYZAA709uJPNiIKAK5jkC08+QUGXcGsz9A5P Mm34SQa9WBZg2/MzN+vB3L3W634Oa8e+XseNQB0EwMWR44e5NpTGMG1sU2dkdBzJH6GjrY0d eInHY+RLFXwuAc2aHZVJknSb+94ZgiAgiuK63c9h7QiC0DD1sUAAbHTdQJJcCALomoaNgMfj RgAsZm06sG00/fpvbjeGceOahZvg2ZaFN+BHcnvweVyohRTjUxlsckTiSVpaZ3d7bEps3FaZ DluXKgEwyzmuDIxz9UI3T375ccaHhyjOFNl17CjK1BgFw8PurnYEs8QP//pFDEQ+8eiD9A8N 0tOf4qknH78R/Oo65fwEP/qbV3H7o1i2RSDazgP3N2NZNqLkwjJNBFGY3SDD1RhfBYetQ1Vr lXwR1GI3Dz18GtswEPQimj+KqKm4JAmP6CGXzWIaGrt3dmF6/bgDAa58cAZ30zYEgSoLPADJ 7WX79u0YloBtgyC58Eqz2dqWwXtvvUVy2zbKRZkDhw87SvAWoVHqo/pzLbro6GhFUcu4PS3s 2neQZsuPT1CZLOuAjje2nZBPQqkoGJaA1+vjsc98Bs0SEWyDsmLh9/mRro+EXG4fO3bswELE 66qedc1NjqPoOsWyTiLkx7RAcJTgTU8j1ceGm0MbmootwEyhTHMyjmEYBAKBKmvQmzfaXmna YnGB7vTauXQnbX3TFosLtFFlqbk59J2STM7+nTOHXshaHnIxGqlBbLW0xdioskjf/OY3v3nb 0tUR0zQxtAoDA4Pous7w0DCRZDOipdLT04dlmoyMjRNPJMFU6OnpQwCGRlIkk0mwVLq7e0EQ yeaLhEMBdF1HwmRkfJpYJDyvoxhqme7eXvzhBB6XeCOtpxd/NIFHmk2zLYOea90Eowlc0uy1 mlKit7sbPGECPjeCIGDqCj09PXiDMbxuaTZNq9DT008wEsMtiQiCzfDAEP6gn57uXkKxOG6X wMjgEL6An7GxNLFoBEGwGR0cwhPw09/TizsQxueRGB0cxB0IMNDTiycQxudxMTY4iDccJ5ce wvaE8bpFUoODuINh+nqu4g1E8HlcpIYGcYWijPT34PaH8bolRoYGkBWN9NgooidAwOtmdHiA kmpiyNMoYpCAR2JseIBiqUw6PY5qCETCQVIjA+TLKlOpUWy3j6DfS2pkkLxcZnI8hegN4fe6 GR8ZZKaskZsYwXIFELHwer1USlkyeY1Q0DffMEcGelEtkWDgRlp6bIiKIRD0z6VZDA/0M10o k4hFrqfZs2WsmERCsx5huak0iimQSY+gmBKhoJ/c9ASYBkODg4je5aMUbhiS20csEiIcSxCO hPG6BESXj3g0jFwqoJRLaJaN5PLiEkxGJ7J0NfnIVixEyYtbtLBFDxI3/A8kjx/PgkkmyeMn Hglg3+SN7/IGkMwyqn4jrTiZQjYttJv8kz2+ENFojEjoxvStqVSQlTLlyg2zDl3XsCyFVDp3 PUUkFPSSzefoaG1iOi8DIuGAF0vy4nFL8+eFA15M0UM8Gp5PiwR9mKIbl2ChaDogEA36qKgV ZrJZSqo1mxbyUTFMlIqCZdmAQDzoQy7PMJUto103PYkn4kiSG59HpKLM+snG43FETArZKfKV 2XcYi8eR3D5a4mFCkehsWiyOJNoUS2VkuXzjPEwU3SKdnnXb9Af8lPMTSKE25Hxm9lFsi8nM NIpcqaoTuSxjVoXQsRgfn0BVbzaTFGlvbyHgD1ZdWyyWKMk3NmKMxuJoagnbFUQtF66nJXBZ OvF4DLAbUwCUYpbUVA5TVwiEYwiAJucYncgiSG48Hje2ZaOrFXRLIOx30ZfKE/GJGFoZ3RKo lHKkxsepaLMVqCsyqVSK0k3O5Gp+krFpGUG40djVchHL5cPSbzTiYDyJV2S+0cxiI7o9eG5y wLYEAZ/Hi3DTZlAerx8RF01N0euXmaTH06iKwdBIimjQB7bJeDrN1ESa8VSKfEmZPW8iTXp0 kNGJDNg22BbpiQmmxlPoNrOCa1uMT04wNTmFZppoSmX+vFwmg98fQNU0sG3GJyfJFzViIfds GjaDA4OYukJZsxCuuyQNDg6iaxqqKaAr8mzawACmbaNZLsJ+1/x5lqHj8vnmd/4ZGhzEFDwE PQKJRBMApVIJyRNCzozg8l3XxWwLQzeRlZsFwCYYCKGq6k1pIolEHE2rthPOF8q0NMerrnW5 3Ejija9cZmqCiek8mpwDyXs9LU1qOsPQyDg2Av8/xm8r+1WuCZUAAAAASUVORK5CYII= </thumbnail> <thumbnail height='192' name='온습도' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAcmElEQVR4nO3dWYwcyYHe8X9m1pV1H32y2byG7BleQ1IjaWZ0jrRYS5YlY2XLgAzDkg3Y 8MMafvO73v1iw2tgjQW86/XLApa1q12vpF2vrRlJc2huznB4DLvJvruqq7rOrMrMyiP8UGTz JrtZrKNZ8QMIAtldnVFZ+VVEZERmKEIIgSSNKHXQBZCkQRq6ADiOg2magy6GNCICgy6AJPXC hXffwIlNcnhfjnQqfc/PPcfCclUZAOnplI3pOBP7WJt/m9dWawRDAeKxOEsbFfZlguRSMZZa ERkA6ekU0mOoAZW65zE1PUkoqFEqt5g7dgTN2qTlhcjoCsqwXQVyHAfXddF1fdBFkUbA0HWC JamfZBNIGglGrczGVp1cQqfpKmhuCyUclzWANBr0aIyQplI32wjHIplKI4SQAZBGQ35thabt onptWm2P69fmwfdkJ1gabbIGkEaa7AQ/JSqlAjXTI6kHaFltguEomm/S8gLkUnFisdigiziU ZA3wlAiHw9RrdZbnL/HLX/6SC1eukZucQcOlXq8PunhDS9YAT4lm00AgmDl0FEVPMzE9y+ba MkogBn570MUbWrITPAJ8z0fVZGV/P/Ko7GFCCAzDeOTvyZP/wWQT6BE2N1bxgzGw69gEGc9k iEaHp3Yasgr8vurlInVbEA9BqdJkcnqSRCw66GIBsgZ4pEq5TLVSZuHSJT786COKW41BF2nP qVarrCyvUNhY5t333mNpLT/oIm2TAXgERVEQAly3ycfvvk3ZdAZdpD0nlU6TSCUJCJ/r85dZ WB6eAMhO8B52sw+QSCQGXZQ9a7sP0Gg0hqI9eTMAlmUNuih7gmVZuK476GLsWQOtAexmjfnF dbLZFJV6i+fmjuK5sgbYKVkDdG+gV4Fcx8aybEq1JvtTEVouhAdZoD7wfUGlYXJlZYtPFouU 6y3+xTfPMpmND7poI2mgAVC1ILoeJpXQ2ahbPDcF3lNYmzdaNufnC1xaLrFWrBMNB5k7kONr Zw/hej7/+Sdv8y+/dY5n9mUGXdSRIzvBPdRo2fyfd6/x/qcbfPbZfTz/zCT7xhJEQnd+7+S3 DP7LX7zD979+kpOHJ3b892UTqHsyAD1Qb9r8zdvzfDCf52vnDvOVMwcIBx9e2VYNi//4P9/i m58/yksn9+9oP7cHwHE9/sfffsSpwxOcOjJBNBx8Em9l6AkhqBgWsXCQcGj3DRoZgCfItB1+ +psrnF8o8PXP7OzEv13LcvhPP/4tLzw7ze9+9giKogCdfkO5YXJ5ucSlxRK/9+VnGU/H7qkB 1op1Xr+wwoXrmySjYV48McO5Y9PE9VBP3u8j34/t8Be/vsxUNs6LJ2aIRZ5sOQplgz/7fxeo NCzajsfMeIKXT85y4tD4PbXsg8gAPEH5ssHFxSJfPD27qxP/do7r8V//8j1ySZ39EykuLhZZ 3awR00M8d2CME4fGOTqTRVWVBzaBhBCsFuu8dXGNjxYKJKIhXjyxnxfm+heGUq3FH/zkbb50 +gCm7fDWpTWOTGf4xuefYWYssR3ux1Gum/z0N5dZ3zL47pef4/jBMTxfcH2jwpsXVllYrzCR ifHyyf2cPDz+0M9CBmAIeb7Pz387j+8Ljh8c48Bk6r4f4k76AJ0wNHj70iofXM2TjIV56cR+ zh6bIqGHujoRH7S/q6tl/vsvzvPDb55hbja3/Z4+Wijwf9+7jtV2+Z0XDnP6yCR6OICm7mxC gmk7/OXrnRr22y/P8eKJmfu+1vcFK5s1Xr+wwsfXNvnqmYO8cu7QfWuFgQZA+B7LyyuMj49R qjSY3T+NKwOwY7vtBN8MwzuX1vhgPk8iGuLvfe4ZTh+Z2PFJ+Ki//6vzS7z64RK//93PMZa6 d8KbEILNaotXP7jO1dUyTcshHY8wnYtzYCLFzHiSZCzEVs1kY6tBqWZSrDapN21sx+NrnznE l04fILDDGa6G2eZv31ngnUtrfPnMQb7+mcPbQfB9MdgA1DaXmc83SccjxIIKiamDBPw2juMQ iUQGVaw9xTAM4vHHG0NYKzX43298SrFm8p0vzHH6yDjqY9YIni/48WuXKFab/Kt/cG7HbXDf 73RiC2WD5c0aq8UGTbPNWCrKZCbGeDrGWDpKMhomHg3xuPVV03I6Qbi8wVfPHmQ6F+dnb80P NgBmY4tPF1ZQQyF8x+fE6VPgyRpgp57UZdB82eDPf32Z/JbBd744x7ljU3fUCEIIfF/geD6O 69GyHGpNm1rTotFqU2vaXF4qMTeb4/e+/OwTqU16pWk5/N271yjXW3zr5WP9CYBpVFla3eTQ M0eIPKJzKPsAO/ekxwHyZaPTuSw1ODSVptFq07QczLaDEBDQVIIBFT0cJBkNk45HSMZCpGKd JszsROqJlKOf+hKAK++/wdWixVe+8iWSj7gKIQOwc70aCCvXTbbqLWKREDE9SCwS2nGbe6/p y1QI34dIJPLY7Uupv7JJnWxyNL6A+hLr6UNH0FUP1+/H3iRp53oeACEEnuvhOg6O8xTOdJP2 tJ4HwLEMPnzvPeq2gh6R9+BLw6UPTSABqoamwnCNOUvSXVeB7FaDa4urTO8b543X3+XMC59l PK1zbXGF7NgkY2Np6tU6AVUhmkziWU0Wl9fQQjqHDs6iPqCP6/v+9pD73UPvN3/m+T4BTZNX gXZBTofu3h1tknA0im+Z+L7C9PQ4LdPCiQdBeNQqdeK6Rnlri2A4it1uYZkWFz/5mHBinP2z M4Tuc6nMc9ssXJmnWNni+c++TOK2ZpDwXd5/603S+2Zp1Rs8d+rU9kjfkE1RGmryWD2+OwJg Nhpo4QBNq02+UGRai+BmdBQ1gGk1UbwoP/vZXxLLHeQH//S7mI0yc8+eIKTH8NoWhg+xWPSO 4WqjVKBQq5NfWGBq7iyJyK1vq2oxj2m7qM0244korg+a7+Pf+Cc9XGeEVh6rbvR8IMxuNmi0 TIqlCoeeeQb9rjkijm2BolCuGUyO52QTaBdkE6h7Pe8EB8IRtgpFHMegVL73Md3BcIRgKMzk eK7XRZGke/T8uqRZLbK0tg6agi+SzE5le71LSdqxngcgmh7j6LGjpJJx9ES617uTpF3peRPI KJeYv/gJ752/QH6z0uvdSdKu9H4k2G7hCpVavUHjPn0ASRqknjeBkuMznDwuECGd8YmdP/NG kvqh5wEIRnQOHj3W691I0mMZ6Ow0x2oyv7BENBGjYVgcP/7sIIsjjaCBBkALhkgkE7Q9wUwm SssRhISP53nykd87JI9VdwYaALtZp9poMTmWZrNuMjel4LoqmqYRCMip048ihJDHqkvywVh7 mJwK0b2n805nSdohGQBppMkASCNNBkAaaUMRgGqpwCeXPsUfqu64NAqGIgANy2FfWqclL2dL fTYUAcjEIxQMh5i8nC31Wc/GAQzDeKx7VT3Pw/M8QqHBLOuz15imKcdMutCz79zHfWa9HAjb OSEEiqLIgbAuDEUTSJIGRba6pZEhhKBm2MyvdZZmOrIvLQPwJAkhcD0f3xd4vsAXAs/zO//7 As+/9TPX83FcHxDEIiFCQY1IKEAkFHjos/g933/gCiwP+xmA5/nYjofVdrHaLi3bIah1FryI hAKEgxqhoPbIhfOEEDQth81Kk9VincV8lUKlief5nWcVic7SR/6NlWVCQY1wUCMdj5BJRMgl o6QTEYK7XHNAU1Ui4VvHKBTQCARUgpr6wDJXDYv5tTKfXN9kuVAnFNQ4OpMhGQ3zk19dlpPh nqRr6xX+5BcfoqkqmqqgKgqapqIqnQ9PVRU0Ven8/MZqKwqdZXvat52YQgiCQQ0hbi1PdPNk 0jSVf/MPX2D/ePKOyXCe5/Mf/uwN6k0bRensR1EUVFVBUbgRNggFNfQbQdPDQVyvs+SR5XiY toPnCUIBFfXme7jxPm7+73g+LcshGFAZT8eYnUhyYDLFdDZOIKCiKrf2qykK3Ni31XapN20q DZOtukm1YeF43q6Or+cLLLtzjNquh+v5tB0P1/fv+9xZRYGEHmJudozjB8eYnUii37WAuAzA EPI8n7brdU4kpXMCqzeCc7sHzQb1bpwQN4MjhCAY0Ha0yosvBM6Nk+rW6zsnnxACTVWI6yGC Ae2JvudBkU2gIaRpKnoXSxJtB+UxzlFVUQiHAoQfe+97i7wKJI00GQBppA0mAEJgNOq4nkej YeB7LkazNZCiSKNtIH0A33epbm3SWG2DEsD1PEIqHJx7DvVGp00+8ntn5LHqTl9qgFppg7fe fg/L6XxQwveomy5j6Tiapt24uVvl5uWoIbswNbTEjS8L6fH1pQbILy9TKuR5/0KCL5ybQ1ED jOcyxBIpgrpNIhHFaNromoLjK6hq5zq09HBCCHmsutSXAER0nWhyjNPHDwOgagHGJyYBiOoR AFLJ4ANfL0m90pevjrZtEYrocqV4aej0JQCpXJZ2q4Uv26vSkOlLAOqVTVYXV6kZdj92J0k7 1vslkuoV0vuf47PBMaazsV7vTpJ2pQ8B2OK3F5bIphJYjkssLDu70vDo+WxQz3XxfEEw2Mna o+aay9mgOyefDdq9PvQBfBbn53nj9V9j2Lub/y1JvdbzADSKeQqVKstXPmWzbvZ6d5K0Kz3v A+ipLCfmdKYnJ5nJRHu9O0nald6vFB8KsbmRp2mUKRSrvd6dJO1KX1aKX8kXQBUINc3BfTkQ nRvEVVXF8zw0TcXzBIGn5DY7ae/oeQBimXHm5hySyQR6PAV0ZoNeujLPoekM88ubhEJBPMdh 7tSp7SpJznLcOXmsHl/PA1AvFbny8QWI6Dwzd4qjBydB1Ugn47iOQyaboVypMZaI4vmA7+Pf +Cc93M17AeSxenw9D4DbNnFRaBkGzWoDDk4ifBfXsRGJCcJ+i9PHj7JVbRINKDjixiM5NNkc epSb06HlsXp8PR8Ic2yLwvo6IqSTGxsj+oiRYDkQtnNyIKx7vV8pPhxh/+Ejvd6NJD0WeSuR NNJkAKSRJgMgjTQZAGmkyQBII00GQBppMgDSSBuKAHiOzWaxPOhiSCNoKAKwsZHHMiqY8oYx qc+GIgCaIqgbJqp8bpbUZ0OxQszU/gOMTfsEVXBkLSD10XYAGo3GwOeVm9xaKd5xnIGWZa8w TXPgn9teNtBF8pqVPBcXNkgkYliWzcnTp8GTs0F3Ss4G7d5A+wC+gICmYjkek5k4jryvQ+qz gQYgmsySTiV59sgsbiCK/gR6JKbt4LiyIyHtzFOzTrAQgtcvrPDXb14lcGOB52wyyv7xBLMT KWYnkiiKQtNyaDRtqk2LetOm1rSZzsZ55dyhHa2jO0xkE6h7T0UAbMflT39xHsfz+eE3zhCN BLEdj5phsbxZZ61YZ7VYx/V84nqIZCxMMhomFQ+TikW4urrFB1fz/OAbZziyL/NY5RZC8M7l dZ6ZyZBL9uf5RzIA3dvzAVgvNfjDn77LK+cO8crZQ6iPOZiwVqrz3/76Q+Zms3z3y8cJBXd+ n225bvKnf3MePRzkh988QyTUn6vLMgDd27MB8H3BLz9Y5LXzi/zrb3+G2YlU1/v2PJ9fvD3P m5+s8sNvnuXY/uzDf9/3efWDJV47v8j3vnqC00cmHvnw3ydJBqB7ezIAbdfjD3/6LnE9xD/7 3dOEg0/2G3e91OCPf/4hk5kYJw9PMDOWYCwVJRq5dUN/oWzwJ784z3Quzj955QT6AB77LgPQ vYEGwLVbXL2+yng2SaHc4Pizx/DchwfA833+6K/e58Bkir//4tGefeN6ns8ni0Wub1RY2axT qrXwfdHpN8QjXF+v8oNvPM/cbK6v3/q3kwHo3kADUM0vcn3TJBgOMpMME8jtJyTaOI5DJBK5 72v+12uXaLs+3/+dk/T7tGs7Hg2zTana4tBUinCf2voPYxgG8Xh80MXYswb6CcazE0QrSyQS OvmGxbNTCp7bedBTIHBn0YQQvHZ+iXylxb/9R59DG8DauIFAgKgeZjI7HN+4nQXG7z1W0s71 5cgtXvyQhc0mn3/p8yRua0cHQlGePX4cgH03tj1oCOv8QoHffLTMv//+FwZy8ktPp76cSU67 TSgSeezpzov5Kj9+9SL/7h+/OBTNDunp0ZcARBNxSvkNHG/33Y1StcUf/dX7/P53P08yFu5B 6aRR1pcAxFNZUhEFw9zdFGe77fIHf/42//wbzzOdkx096cnry9Ohl1fWUCJJMvFdfoMrdDU9 QZIepec1gKKoCNskHM8S0HbXCQgHA/Lkl3qq5wHwPQdLqOA0cT054V8aLnc0gXyrzoX5JbY2 q7z81ZdYX7hO0zA5/PwpRL1E1QmyfyKDItq8+86HuELl9JmTFNbX8XzBzMHDRO+6SqMFw2Qz OaKpOMp9hq62igX0WIxiucGB/dO9fbeSdJc7zlYlEMS120xMjOPaNq5dp0kEt9XCtmwEgkql jNO2aLVaiJCObTYpbJZQEGQnZ+4JQNts4igKb776Kl/5zveIhm/93LVbrC4tE8lNkg74NB1B 0PfxPA/XdftzBPY4eay6c1cAdFKJKK7QCIVjzM3NUfFixDWbzXUDR6ikU4fIZpLUawY+GvFk Ck24mJ5GJKDQMJrour59c4ndbOK7bcLhxD13aplNA7ttE3Bs8g2bE/sVeMBIsHQvORLcvZ7P BfI9h+tXrxHLZkilMo+cNSmXSNo5ORmuez3vBHtti3KjwfynF7lyeanXu5OkXel5ANy2jed5 6JEY2YmH32AiSf3W88ajGoyQSyYQoQjpPt0rK0k71fMAGFt55q8vYbQdWobH2bPHer1LSdqx ngcgpMcJB1T0ZE42gaShsyfvCZY65FWg7g320Yiew+LiIqbZZHW9wFAlURoJAx1BEb5POKix sLhKLhai5QgCciR4V+Sx6s5AA2A1qyytFZkYS7FZMRjbrwByJHin5Ehw92QfYA+TfYDuybvL pZEmAyCNNBkAaaTJAEgjbSgC4DkW6/miHAeQ+m4oArC+UUDYDUx5OVvqs6EIQEAVlCoGgaEo jTRKhmIc4GYRFEWR4wC7IMcButezIUTDMPD93T8GRS6UvTtyoezu9CwAj/vMelkD7JwQAkVR ZA3QhT0/icT3BavFOpeWSlxaKrJVN5nIxPjWi0d5ZkbefyA93FAHQAjBVt2kZTmYbQer7WHZ Di3bpWZYzK+VqTQsJjIxThwc43uvnGAqG+fq6hY/e2ueQsXg6585zBdPz+56HTEhBFXDJqAp hIOBB64a2XY9mmYbw3QwbYfD02mCgZ2vMCkN1lB0gm93exOoZTn88c8/QFNVwkENPRwkEg6g hwKkYhGOzWbJxPX7Lo0qhKBpOvzd+9d485NV5vbn+Nxz+9g3liCX1O+7rpfVdvl0ZYt3L6+z sF4hpgdRULAdF8f1UFBQVAWEwBMCBYWAphLXg+jhIIloiG+/PEcuJdcJ3iuGOgBPiuf7XF4q 8dG1TdaKdaqGRUBTmczEOTSVAkXh44UCtabN8YNjnDs2xdxsjoCmbgdFCIEQ4N/4X1FAVRXU AS2Qd7NMMgDdGYkA3M33BW3Xo1A2WCzUcF2PM0enyCbuX5sMKxmA7o1kAJ4WMgDdk2Ov0kiT AZBG2kAug/qew7WFefRYinK5zFguS7lmcPy5uUEURxphfQmAED6W1UbXO6u/K6pGPJ7Acyz2 zcyyuLbKkbEkTUcQEvKpELshj1V3+hKAhY8/YLFY5cTZl9iXi+G1LUrlKpNTkxTy6xyaHqdQ MXh2SsGV6wPsmHwqRPf6cuSCAbh8+VNy+46wL3eYQDjKqVOnABgfGwcgNzbRj6JI0h360gm2 bYcTz5/j2JH9/didJO1YXwKgaoH7LI8nSYPXlwAkMymCKLTb3qN/WZL6qA/rBLv4AjY2NtA0 OUtSGi49D0B1Y5EPLq9x4OB+5Cxhadj0/CpQJJHlxZf2kYqFUVU58CwNl56fkZF4gvLaCusb 65iyDyANmZ4HoN0yaCvwzq9/hSEDIA2Z3gfANFF8j0g0hefLAEjDpecBiOfGCSoq5158geQj VomXpH7rw0rxJuVGg4X5K1y9stjr3UnSrvQhAJ0HXMViCXJTYwAIz2X+2iKOZfDJJxcpbha4 eGUBf6juTZNGQc8vgyqBEEk9AuEIiVjnNkdFCxDTwzRrVaamZ+R06C7IY9Wd3q8UXy6wuLxK o+1gteDs2WP4nkNxM8/E5BSl9TVmxrNsVJs8N6XgyenQOyanQ3ev50cuHE2ghwJE02lyUzkA VC3I82fOATA1NX3j/87vy+tEUj/Jp0LsYfKpEN2TcxOkkSYDII00GQBppMkASCNNBkAaaTIA 0kiTAZBGmgyANNKGIgBbhXU+vnAJb6iG5KRRMBQBaDkeM9mYXCle6ruhCMBYKsGWBTF5v4zU Z9tzgRqNxlAsuHxzoexQKDToouwJpmnKeVNd2DOT4TqL1In7PlrF9/1db1cU5b4rRT7O37rf 9puHtdf7eNBkuCe1j34cq4e9v15/5tqPfvSjH93z2wPk+z6+71Pd2mSz3KBZKWL5GvFoBEVR KBXWyW/VaDdKKHqGkNY5yUyjyvzCMuCyXtgil0l33qzvcPXTq7iez8rKCslsjuCN1R/Xlq9T b7kIq0pTRIiGNBRFobq1ycpGEbtVo95ySMZjKIpC2zK4evUaWkBhbaNEOpPqrBIpPK4vLGBa Nqsry6jhONFICEVR2NxYoVg1qJUK2Le9D6NW5vrSGk67RaVhkkrEURQF37H49Oo8CrC4vE4u l+0s3CcEK0vXaLV9SpubZDJpANrtNuFwmHJxDdsPEwl3Zrjf/KCLG6tsVg0yqcQd25u1MteW 18hkMqh3nRj5tWW0SGz7ON382cr1eSxfJR6N3PG3GpUSG1s10sk799FqVLk6P08kkSUcvG3F Td/j2tUrEIii3zhOAEJ4XLv6KVo4RiQU3N53rVKiabnUtjYwLJ9ErLPMbdtsslGsoPhtak2L WPTm8rcei9dX0PUgC1cXiKayhAKdz7a4toIfirC+eA2X4HD0Ae4nlUoRUH1EMI7drG9vT6ZS BAIBskmd1m2d5kg0SVwPEk8mCd6+KLYSIJtNE9Yj+GYTx7/1o0wmg6b6VLeKNExne3sikSIc CtBsNvG8Wy8IhmOk4lHW1zZwvTb+9j2cKplsmrAeJ5NObZ8gnfeRJqApNIwmzWZze3s0niQa CWJaFvn8xvZ2NRAiqPqs5Lc4PBGh1Lqxf0VBj0RomRaRSPie45UdT2Ea7Xu2J9Npgvd5JGUk GsUyW/fchuraLUpbVez7PMKm2Wrie/duX99Yx7Ft7m5KRBMpkokkscidt50I38VoNjFa5p3b hYttu2zkC3e9hxxtq4lLANe+dQxDegxN8Umksnht67ZXaMT0EGooSioR5fY2TjoZx3IFeiRI y7SGNwBLS0u4voJtbEHg1ge+vLSE67lsFIpUtorb20v5FeqWw8riMo5724fktbi2tEHLMNDC QVz31gm9uLiI027T9gRtq7W9fW11CctxiUVj2G17e7tRKbBZM8jmsniOcysAvsP1pVV84aMG woQDtw7r0tISnusRCIVQtVvbN9dXMGyHeCxOJp3Z3u7aJo6vkIwGuLpWI613XiOEwGg2URWf wvo6W9XGHcersF6gVNm65yRcXlrE9bx7tjcbDTQtcE+/z/M8fM/FtKy7XiGIRePY9r0hy2Vz OG0H/+5XeC7haJy7V54VCILBCNpd2xUlhK4HyGazd2yvFPPki2Vcq4l32z1cVrPO+vo6+Xye 9UIR/+Z78V02NjZYvb5AodKE2979ZnGTUn4Dw3RQFcH/B9DT0FVyYRcWAAAAAElFTkSuQmCC </thumbnail> <thumbnail height='192' name='조도' width='192'> iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nO2deWwcV57fv1XVd/XJbh4iRZEURVKUZF22JUuyx7FnMjO+dmZ3jkWywU4y gyB/bXYCBAjyxyYIkGuBIMBi8k8QIFkkk53N7hwYe8b2jL0+NJZtybYs6+J9k82+7+6qruvl jxYpNrua3ST7Evt9gBbErutV9fvVe7/f+x0MIYSAQmlT2GY3gEJpJi0lAOl0utlNoLQZLSUA dDZGqQXLM3dw9frniMcT+jtoCnLpHACAaSUdIJVKwel0NrsZlEed9Bo+WFTgQQKh1UXkNSPM djtmF1cxdqQLXp8H68tpJJNLMDS7rRRKzeFMcNg4aBkNnd3dIMSM1WgUIyOj6LCqCKck+JyA oDjoCEBpb1pKB6BQGg2dAlEOPJKQwcJyAF2dbsQzeThMAGO0QBDzdASgHHwMZit4ixHRVAY2 VoXZ7gQxWMAydApEaQOSkXVEUzmYGCCaFrG2OA9FzCDg91MlmNLe0BGAcqDIZrNQVbXq/akS 3NIQBNdWoBp4GIgISSGw2V0QUhEYbG7YbWbwNluzG/lIQ0eAFsdsNiGVSmLi9k28++67mF8N oK9/EGo+i1Qq1ezmPfLQEaDFyWRzIACOHT8Jd3ca/f2HsLwwC76jB5KYbXbzHnmoEvyoQghU QsCxdBDfSjabhcViAcdxVe1/oJ8eIQSZTKbZzagPDEM7fw14pKZA8UgAWZmFhVWQFFQc6vLC VkEJbKEBriGsryzC7OqEkAiBGK3ocLlhs1ma3ayW5dESgFgcWYUFyYQxsRzB4088gWOD1Aqy lXgiASWVRWxpDhmTFWfGz1EB2IFHawxlGAAAUUXMTt7BSijZ5Aa1Hm63C06HB5Kcxa0PP0Ra aXaLWpsDrQRv6AAOh6Nm56S0NrtVgjenQOl0uunzZUEQ6nLOZt8XpXGIoghFUcA8mC1UYlMA WuUtWesRgGGYlrk3Sv3hOI6aQSmUaqECQGlrqABQ2hoqAJS2hgoApa2hAkBpa6gAUNoaKgCU toYKAKWtoQJAaWuaKgBiJoYvbt1GLF17HyAKpRqaGg+gaRo0VYWiqlBVFZqmQVFq67+rqmrN z0lpXdQHfalaB8imCoDJwoN38LBbzeA4DizLwmCoXZMIIeA4rqbnpLQ2HMdtfqqhqT3DYLJi dHS0mU2gtDlUCaa0NVQAKG0NFQBKW0MFgNLWUAGgtDVUAChtDRUASltDBYDS1lABoLQ1VAAo bQ0VAEpbU3dfoGwyinuTMwDDwur04tTxYVSXtI5CqT91FwDWaISvswsmzgxXhxsEoAJAaRnq PgWyWA249vpbuPnZLcQyctEFNVXG7MwM8nL1ZS0plFpS9xFAlRWYXE7khRzMZmPRtmw8iGRW RreiwMCCBsRQ9k3LBcSwnA3PfflpSDCjw1lcqcRid8NmSEDMy3BYzTQghrJvdhsQU/cpEMOw cDhdiAT9ULViqTRa7Bg/dQqdbnu9m0Gh6FJ3AVAVEYuLC1AIs1niiEJpFeo/ArAcDJwJPm8H FFmu9+UolF1RdwFgORWv//hv8dHtGdjMpnpfjkLZFfWfAskyDLwVLrsdHEcXnimtRd2rRCaj QQiaEV43j5VlPwaHh8pKHa0SSdkvu60SWfdXstPjQyaygt++9S6cvi7qfERpKRqiBGtCDioM MJqMlQ+gUBpIkQBIQgZT0zPIZpO4+v4HCMeSUGQRMzMziCfTIAAy2SyEbBYaADmfw8T9e5iZ X0ZezGJ6ahJziyvQtl1EVTXwDjs4lppBKa1FkQAYzGYomTQEQYLJzCEWT0HM5SDlBQQDEQi5 NEKBAKKJNDKpBERJhapIYDkW2WwGJpMNvNUCbNMqOnv7IGeSUFRasJrSWhQJQD6bBWMAMkIe wWAYmVQSKiEwGM2Q8gIYRcBrr/4Cb7zzAUxmC2QxCzEvIZ1KA2CwtjqPpdV1KGrxGGAwW2A1 cchL1OmN0lrsaAXSVBUMx4HZ9v/dIAkp3PjkFjRwOHfhAhyW8noAtQJR9sturUA7eomxW07C VnlCCuVRglolKW1N3f2EjWYeI8PHwLudMNKVYEqLUfceqUgiUrkcrr79FnLyNgMp0XD35sdI 5+vdCgpFn7qPAOloGLFYFEF/GImcCI/toRKciq4jEk/BkxVgM5hoRBhl3+w2IqzuvkCaKiOw FoDD64XNai1ZDMsLGTAmO0wctQJR9k9NrUC1gGgK1tbXoazMwdExhFPjA0XbzVYaDUZpHnXX AYRkDDlBRC6vwlCFL5CmESQyYr2bRaEAaIAAWN1dGBs5irPnnsDwQHfF/b+YC+BP/uINpHPS nq85uRzBxFJ4z8dT2oe6C0BifRmffPI53nn3XdyfXKq4/8nBLvzZH38JvHXvnqM3JtYgK9td 8iiUUhoQEmkAQzSYTSaYLeaK+5uMHEb7vWD3GEBPCMFiIIGhQ+49HU9pL+quBHt6B/C1l3oA 1gijof4LYYQAeUmFw2au2hRGaV8asjRrNJkb0vkBIJXLw8lXHmkeRURJQTCeaXYzDhQHzjdh bi2Go72eZjejLly/v4qfvH232c04UBw4AZj3x3H0gM7/5/xx3F8M06ldDTlQAkAIwUIggf4u V7ObUnMIIVgJpXC4y4lQItfs5hwYDpYAAEhkRHR5+GY3peaoGoGsqDh7rAeTdI2jZhwoARDz CizGg5kJOpLIwW234LGjXZhYijS7OQeGAyUAB9n+vxRMYLivA0e6XVgNp5rdnAPDgRKA+fU4 hg6oBWjeH8dwrwcsw8BmMSKVpUEUtaCpAqBIAqYmJpER9u73s5X5tTiOHFAFeCmYxJFuFxiG wbG+DtxfpHpALWjqhJkzmuFy2cEwhUCG/QbEBOMZ9HTYis6hqiqyQh43p9dx6eThWjS74Wga QTqXh91igKIoGOvvwKeT63hirKfZTWs5Wq5E0k7kM3EEIgnYPV3gOG5fJZIkWQXHsTAZHzrR bZRIslpMeO3DGZwb7YXd+uilaI+nBfBW0+azOT7QiZ++P0lLP+nQciWSdsLi8OLs6VM16ZRr kRT6fPrRZCzD4MWnRvDGxzP7vk4zWAomMdTzULk3GThwLIO8TEM998uBUYLn1uI41ldeAX76 9BF8OuVHXnr0Os3ieqJIuWcYBqP9XkwvR5vYqoPBgRGAhfU4jnSXV4ANHIvnzw/h724uNLBV tUHPvDt2xIe7C6EmtejgcCAEYMNKUskF4vnzQ3j/1hJk5dHJUappBNFkDj6Xrej7sX4vJpfp gth+ORACoGoEhAAW085KodHA4eJ4H65+UTkyrVUQJBlGAweOLf6peIsRkqJBVWnk2344EAIQ SebQXaX/z9cuDuPNG3MlGaxbleVgEn2dpco9wzAY7vVgIZBoQqsODgdCAGZXY1WvAPMWE86P 9OD6/bU6t6o2rIRSGC5zb6eGuuiC2D45EIZklmVwerhyxokNXr48iv/y1x/i1x9Nb3432u/F 975+BkyVsciL6wlcu7uCf/CVU7rxyzen1/HXf3cXhh3yofZ47fiTP7iw4zXn/HG8ePGY7rYT g52I3haqai9Fn7pnhtsNe80MRwjR7UQ7ZYbTu+1qO//G8X/z7j1IsoY/+upjRUJwazaAX1yd wL/6h0/Dat75HbPTNQkh+Lf/6z382R9/CUaD/sJOuXtvV1quSmQj2EsHYBim5LPb47/z3EmI soK/eefe5vdTyxH89L37+BffvQSbxah7nWqvmZdVsAxTtvNvtIOydw6EADQLlmHw/RfPIpnN 47UPpzG7FsOPf3sb//IPL8Ntt+z7/OvRNLzbzJ+U2kIFYJ9wLIsfvHQOi+sJ/Lef38A///ZF uB377/wAsBZOY+ywtybnoujTVB2AEA2hYBid3d1gmUc7O7SqaZAVreJaxG7YMNXupEhTinmk dIBsIgQxLyEUe/QjnDiWrWnnBwodn3b++tLUp8tyBiQSCRh2UPIolHrS1HUAq8OLEydcMBj2 ngiXQtkPmwKQTqebmHCpsJgjCLVf1BEEgSaSaiNEUYSiKFWbhzcFoFXKCNVaCWYYpmXujVJ/ OI57dJRgCqXZUAGgtDVUAChtDRUASltDBYDS1lABoLQ1VAAobQ0VAEpbQwWA0tY0VQAI0RCP x6FRVwVKk2iqM5yQjmJuZhkDY8fhdVhBCIGm1TZdiaZpezrn3YUw5v3xzb8LmeUGa+7yvBuy ooxERkSfT9+1gxCCOX9ixxSRjWBhPYH+LmfVrtyipGA9mqlJcRNN03bVj5o7AqgaWI6BUsdM bXuNmf3F1Qn4XDb0+hzo9Tkw54/j3kJzU5D85O07+NHPbpR17rszH8K/+Z/vNjXnUUaQ8O/+ 8v1dlXGaXI7gz//qGqQa9IPd/t5NHQFs7k4MH7PA4XSAfRAkzrK1k8kNZ7i9nFMjwMUTfZsB 6UJeQSSVq2n7dkM0mcNqOI3xAR8+nw3iibHeou2EEPzqoxmcGuoq5BLq62hKO9+5uYiTQ12Y Wo7izLHq6hf4Ixk4eTOu3VnBlx8/uq/rM7vsR00dARiGhcvl0s2r02wUVQPLPmxXl4dHON6c 8qSEELz+8QxeujSCV66M4bVr0yWjwNxaHE7ejOfPDzWtiJ6YV/DZ9Dr+8QtnML8er3zAA1bD KXzv62fw1qfz0LTG6oPUCqSDJKswGNiifJwdDgviGbEp7UnnJEyvxvDk8T54nVYc8tpxe644 M/TPfzeBbz59HGNHfLjXpGLa791axIXjvehy88hLCiS58pSGEIJALIORw16cHu7GR/dWG9DS h1AB0CGXl2EzF0epOXkzEk0SgLc+nceXzw+BZQvD+zefOY7XPpza3L4UTEDTCPq7nPA6rYin hYZb1vKygqu3l/Dc+SEwDIPDXU4sBZMVj1M1Ak0jsJgMePnSKH5zY7ahbacCoENGkEqq1ljN Rihq47Mx5/IyPp3y48pj/ZvfdXt4OHkzZldjIITgZ+9N4FvPnthUAA95HfBH0g1t57U7Kzg3 cmjzuY32+3CvivoFOVGG5UH2PCdvxmCPG1/MBura1q1QAdAhk5PAW0rjlM1GDvkqhvVa8van 83jm9JGi7HAMw+AbTx/HL343iUAsg6woF5k+Twz4Gpo0V1ZUvH9rEV97cnjzu7F+L6aqqF/g j6SLSlu9fHkUv/xgqmFTOCoAOqRyeThs5pLv7VYTUrnG1efNS0rBMnJ+qGTbkS4nCAj++6uf 4VvPjheZ/04OdWGygeWTPp3yY+yID07+4TPzOq3ICFJFk+xKOFm0rtHptqHLzTfM5NzyAqBp BK9em4K6jwWyrCjhzeuzVb9VUrk8XHypAPhcNkSTjbMEXZ9Yw8UTfTDrLL4xDINvXBmDycjh xGBn0bZenwPhRLYqi8qHd1eqelOXQ9U0vP3pQtHbHwA4jkWP145ALLPj8auhFA53PRwBNnSc N2/M7rlNALAWTuE//p/f4T88+Pz7/31VtzxWywtAMivix7+9jWAsu+dz2MxGXP1iCelcdQW5 U9m8bm7PLg+PUHzv7dgtM6sxnD5aPu372BEf/vUfPa27zeOwIpraWVhFScHPr07gb9+7v2fz 4xezQfR08Lo5TMcHOiuaZIPxLA512Iu+6+7g921w6PU58KffuYgffrvw+dNvX8Q7ny0gvW0E b3kBmF6JwmW37KseFsMweOnSCF69NlV5ZwDpXB4OW2np1k63DZEGjQCEEARjGXRVqHxTbuXz +BFvxSJ6V79YwrNnBtDhtO7p+Woawa8/msHLl0fLtGFnRVjVNGQECa5tLxuWYUAI9rUmwDAM eIsJvLXwcdjMeP78IH77yVzxtfZ8hQYxsRTBN58+vq9hGgCeOnEYdxdCyOXlivsms/mi+ewG nS4e4QYJgEYIcnlZtx3VMNrv3VERlhUVv7u9jOfOD+HlS6N47drUrs2P9xfDD9Yl9H2TOt02 hHaYiuUlVTf1O8MwcNhqr289c3oAn076kRUfzgRaWgA2qj9eeawf67HMviwDHMfi6xeOVVUs O52T4NRRgh28GalsY5TgvKTCbNy7p8rRQx6shdNlO/VH91ZxYsAHu9WEI90uGA0c5tZiVZ9f IwSvX5/BK1f03/5AoShhh8OKUEJ/2hiMZ8rWdut08wiXOW6vmIwcnjkzgHdvLm5+1xABUFUF +by06w6cE2UYOBZuuwV2iwmR5P4yxz1z+gg+maxcLFtWVHA6nowOqwkZYff3sRfWo2n0dFRX +E8PjmNht5qQE0tHPFXT8Jsbc3jh4sjmd994egyvfVjqYlGOxfUEzEZDxdK0Y0d8mF7Rt0it htM4rFMAEAC66jTdfP78ED6+v7rZB+ouAInwOm7evIXJyfu4dWcCu7HlzPnjGOwpuMiO9Hdg emV/0yCOY/GlMwMVi2WrqgaDjjMVyzIwGtiGrAUsh1IVO1clxgc7dadBn0z4MdrvLapjMNzX AVnRsFbFAhohBcvcy5dGKu57aqiz7PR1JZQsW9y8MALUXgAsJgPOjx7CnfmCblJ3AXC4ncil 0lAEDQODQ7u64N2FEE4M+gAUFKpaOHlVKpataQQEAMfpK5dWsxFCFXrEfvFHis2De2F8oFQJ 1TSC33wyp9t5X7k8ilerWIRaDacgSkpVlTl7vQ6shFO65wzEMujZZgHawOe21UUAAOCrTw5j cjkCQkj9BYAzsliemMbq2jrS2+bPspjBvXsTum9UQgjm1mIYOlR4yEOHPGV9SzSNVD10W0wG XBjvw/u39Itli5ICs8lQ1rrS4bAius+pWDUEYtmqax+XY6jHjZnVGERJ2fzcmg2gz+fQNVue GOxENCUguIOplxCCX34whVeujFXlxWs2GWAzGxFLFz8zjRDEUyJ8ZUpAdbn5srrDfrFbTUhk RITi2frHAyiSiuGzpyDnFXi23ayYTSAvKUhkcvA5bdA0DYpSmJtt/GB2iwGKosDAFlwRkhmh xE3hf/zqc4wP+PD0Fn+ZDVRV3TznBn//iSH81//3Ef7e2SMl+yczAnizseSYDXwuKwKxNAZ7 apfEdzuEALFUDi7eVLYd1cCxhU795391bfM7A8fiBy+eKXveFy4O45cfTOIHL57V3R6MZ5FI Cxjt81TdtpODPtyc8uO5c4Ob3+VlFQxDoGkq9NY4LUYW6Wx+1/evqipUVa34Qrw43otffjBZ fwFgWDP6e7shMWaYDMUDDu/uhismwG4tZPNlWRYGQ6FJ64Ekhg55Nv8GCqa9+fUEzo0c2vxu PZqGP5LGciiFZ84MFLkwE0LAcVzROQDAaTBA0QhYlivy+QcAUVbBW00lx2zQ5bEjksyV3V4L REmB0cDBZNx/3YR/9NXTu9r/3OghvHptGsmcDK/TWrSNEII3b8zhlStjMO7CQvX8+aP4z//3 Azx//uimcSGcFOB18WWf40YH3u1z5jhu87MT58d68auPZuo/BSKaDEGSkEwmSqJ0WM6I4ZER XcezicUITg11FX13YrATd+cfzmkJKSzEfPf5kzg52ImP71Vf/Z1lGV33iqwg6y6CbdDlqY9y tpVoMld2alBvOJbFS5dG8PqWIuIbxNMi/JE0Th3t0jmyPLzVhPHBTlyfePj7rIRS6N9Bx2EY BmaToW76FseyePGpkfoLgMFkw+DgACwGFkqV/jyEEEytRjHaX1whcfDBnHaDeFrESiiFx452 4+XLo3jj+kzVuoCLt+gut6dyed01gA3cdguSdY4LWA3v3DnqzRPHezG9Ei1xG3jj+gy+8sTR olG2Wl64eAxvXp/dXBTzR8qbQDfwOq11XXl/fKy3/gKgyjm8/dpvEMvmoUjVSbOkqEhmRHRs G4J5ixEEBee2DVPcCxePASh0zGN9Hfh8pjpf8u4yb/JkRoTLXl4AHDYTktl8XdcCVsPpsqur jYBjWXz58aN48/pDh7RUNo/7i5GSWORq8TisGDzkxmfTfgAFIS+X3WKDeo+2Bo5thBWIwdzt +1iLpOG0WysfgEJ93G4d8xjDMBju9WA5mEQqm8f0ahRPjj/8QV6+PFr1Yo7XadV1bEtm83Dx 5ev8mo0GaJoGuY6BMf5ICn0V3o715spj/fh8JrDpNvD6xzP46pNHd6xaX4lXLo/i1x8VRulw Mgefe+dpns9Vf9+ruguALCoYPncKY0P9hZwtVRwzuRzBiQGf7rZTQ12YWIrgjeuz+PqFY0XD sc9lQ6fbVtV6QZdH368nVcYPaCtWs7HiavJeIYQgnMihq0LnqDdGQ8Ft4K1P5pEVJNxdCOHS qVIr227odPM45LXj1mwARCMVXT0Ko3R9vW/rLgC5bBbevkPIp0O4fW+6KgGYXolifKBTd9vY ES8+m17HF3NBXNb5QX7vyhh+fnWi4ijQ6eZ1ffsr6QBAIXQvWSefIFnRwLDMvt60teK5c4O4 PrGGN67P4ktnBmCqQZtevjyGn7x9tyTkVA+fq36LYRvUXQBc3h70dTiQE1UMjwxXvKCiaoin xbIrhLzFhJwg4SuPD+lmHuvzOWAzG7GwntjxOh1lFKxcXobVvPObqdNdv7iAVDYPu6Vy52gE FpMBl0/14+3P5vHsmYGanLPP58Ahr72iAgwA3h2mQGvhFD6+t7r5+XTSvyf36YYkxhJyWZht PDi28sohyzD4/otnS+zzm9tZBj/8zlNllUSGYfBPXjwLRd35YditJgh5BRohRSuamkYqWjm6 PHzd5qZr0XRTLUDb+dqTwzg52KkblbZXvv/iuaqy17EsU7ZT/8VPr+PyY/1gwWzuK6u799Eq uis1F8ft2RXMTc7jpW+9hPW5BaSTGRw9expS1I+EZMLR/m4wRMWdm9cRk2249Pgx3L27CN5u w9HhIRh13spOjwfBBxkMqrnpgZ6dc0RW2u5xFJTtStdjmEKHZ7f4/aiqVtYPaINOtw23Z4M7 7rNXVkJJ9FawjjQSk5HD0Sp8fnbD9gCYcjAP/in8Jg/7VTqXh91qwjeujJW4rCjS7qamRb2V tdhB8nlceeYyiJSHIsaRM1hABAEsZ4DFYkI8HkMkloTd6cOhbhdUYoSVU5GTZJTrb2abHWIi hFi6upDERmGzGIvchWVFBcMyFX1cfE4bIhXCDfeKP5xuugWoVWAYphCHnSr2I5pdi2F8wLfn vK9bKRIAhjXC63UhlUrCYOIxevwUTo0fh83MIRxLIxMPw2Dm4bJbIBOAyDKEnAjOYoXNyEDU sfNrqoJkIgHG6oTXubfopnrhc9oQTj6cy28kxKr0YO02EzJVxhfvlmA8u684gIOGnin07nxo 16vR5SiZ2A0c3RLhw/EoDMY2jI6NFe239e8OT/kpiZiJ4q2334MCI04/cQG2JqYX3053R0GZ He4tJJLN5EoTYunBW4zIinJh+lSFXlMtiqpBUlTwLaIEtwJd7lJ9a2olij98/lRNzl/33mgw WTE2Pg4NHCzG5pv2tlJIc/JweM2KMvgqBIBhGFjMBoiSApuOH9NeyYkybBUsUO1Gp9uGxcBD i96Gb5DRUBsDZt2fttHiwKUrVwCgoodeo+l085jaEq6XzuXh3MERbiu82YisKNVUAPzRNLo8 +ubfdsXn5vHJpH/z79m1GEYOd9Rk/g80YB2AaArmp2awuLSInFRqpgr6l5Gvz6JqRbxOK2Jb FKxqFsE28Llt+45R3s5aOFU2RLBd6dwWGTaxGMGJwdrM/4EGjABiJoU8CGZvXAfv6wO/ZYiX xSwi4RAsHf0wMFpRQEyt0AuI2cBhMyKeFja3x1ICer32qtrQ4+GxGkpgpG//ZX02WFxP4PKp wzV/Bo8yRpZBLi9tPpPp1Si+duFo2WdUbUDMBnUXAFWWYTUZ4PB0wbBNYZRlCZKsQBBFuCzW ooCYWlAuIGYrLMuCYVhwHPsgSZO1qjacH+vFj35+A19+fLgminBGkDC/nsD3XjhbdW2tdqDQ kRkYDAYoqgZBUuDkLWWnQNUGxGxQ9yfNe7wgsorRk6Mwb1tgsjk8OPfEU+hxV+clWg8MHLtZ myqVzcPjqG6Rxueyoddrx73FyinAq+Gdmwt47vwg7fzbYBgGdqsJ6Vwe8w+yhNRq/g80xBs0 i2gqhaXFRcxPL9f7crvG47Agni4EuGREeVcmyN+7MoZffVh9EE45REnBjYk1PPNYaYwyBeh8 sBYwsRTG8SPeygfsgvq/bgiByWhCh6cD3YfLJ3ptFt1bEt5KkgKzqXpL1SGvA7zVWBSlthfe v7WIC+P6WaApDwNj7i9GcPyIvpfwXqm7AGiEBUdUqOBgbLF1AKCw0LKxGqxW4Qi3nVcuj+HV a3sv6CDJKt7/Ykm3BgClgM9lQzCeRSorwueq7XS5/vEAiTACoQimZuawOl990Hqj8G3JQFYQ gN3NLwd7XNAIqeh+XY5rd5ZxfuRQVQtw7Uqnh8ftuSD6Op01nf8DDRAAi90NJ29F/+HelpwC bawF5GUFRgO76we8UajitQ9LsyhUQlZUvHdrCV+9MFx55zam02XDzel1nByqnf1/g7pPOnmP D5eefbbel9kzHU4roikBqWxeNz1LNYz2e/GL303CH0nvypX585kARvs7ql58a1fcDgsYBjVX gIEmV4pvBSwmAyRZRUaQdeuCVQPDMPj9L43jRz+7vqsRhGMZ/PC7l/Z0zXaCAfDSUyNlowT3 Q9sLAFBIhBtPC3suRgEUqiL+p3/2lRq2irJBIcrvXF3OTVddUMj774+k9zwCUB5dqACg4BU6 uxbTrQxJOdhQAUBBAOb88R1zglIOJlQAUHC5XQun6BSoDaECgMIIoGqEToHaECoAKDjEmY0c HQHakKYKgCIJmLh7p2JF83rj4s3ocFp37QZBefRp6joAw3Cwuzvg4i1QVbXhEWFb+acvnwdA aDTWI07LRYTthCqLyKTTEL2dsFtNTYkI2+DxPea9p7QWu40Ia6oAmGxOjI/TLGiU5kGVYEpb QwWA0tZQAaC0NVQAKG0NFQBKW0MFgNLWUAGgtDVUAChtDRUASltDBYDS1lABoBksDXgAAAN2 SURBVLQ1TRWAfC6FL27dRipXn6rrFEolmioAkpBB7+F+ZHO1rbRCoVRLUwWAd/kQj4bR4aYe oZTmwJAHkQPpdHrfee73iyAIsFprm/23HuektC6iKMJsNledoW8zHsDhqD6nZT1xOh+OBpqm gd2Srny3fxNCwDBM0b3t95x6fzMMs/nAN14iW3+AWl+TEAJCSF3vY/vfjbiPWtwXx3GwWCyb ATGV7qOlrUBCJoHJqRkEA37ML60W3SgAQJMxPTmJaCSCexMzAKN/O7HwGhLpgqK9/RwsyyKT iGJyeg7atoe/uT+RMHlvAhlR1t3OMARLc7NYWF4redgb+0SDfiyurOu2AUTB4tIq8rk01gIh nWswWF9agCDLmJmaRCIjlOyTTsYQiSextryA9VBU5xwEiwtLyGWSuH/3DtJ5ddt2FhH/KtKC iLmZKSSzYsl9ZJIxTM/MIxryI54RS66hKXlMTU4iGApicmoG2rbuxTLA8sIcAsEwpibvIyNI RedgGAbxSBBziytYXpjV/c0lIYOJ+1MIBtcfPG/933xpaRGKqj34fUp/D79/DYFwrLUFwMo7 wVtMSKXTyGSzJdtZzgQjR7Dsj+BYjxWhrKZ7no5OF4SMVP46NhsEIQutzAxQy4vIyQq0cjuA RU9PJ2y28slbRVFEMBCAXgtZzgSziYPZ5gBLSkvJAgzcvAUiMcBiZCGIpffi8vggiznkslmo qt5VONisJphsLrjcbth1CnK7nXaIeRGirCEQWC/ZzjucsJiNcLscECW59ApGC9xOB6xWK6Rc FmrJlJqBx+MBiApREHWfp9PpgtFoQG9vN8wWvmS72WaHw2ZCThQRCgWglZm287wNmlp+Sm9i CbI5obUFIOxfQSYvw8AZwOkUj1MkAZIKuHgjplYS8Nj0byfoDyISj6Lc48hkMjBwhrI6kMaa 4LByyOdLf/QN0lkRnd7yNX55ux1uj1v3gauyiHW/H4FAAP71dYjyNiEgBIFwCNHAGnKyBkZH jGLhAALhGGw8j7ykY1bWFATW/YgnEzCa9DNghMIhROIp8CYWHR2+ku2BtRUIkoxwKIxQKFyy PZ+Jwx+OIZPOwGAyQC3pgBoWFpdAAFitVuSlUkFeXl6CrKiIJwQc6vaUbI8H15AQ8rDb7HC5 PGDLzPUjQT9CsbjuNgCQNA0sy+D/A3VuelDRXnVCAAAAAElFTkSuQmCC </thumbnail> </thumbnails> </workbook>