{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "from pycaret.classification import *\n",
    "\n",
    "data = pd.read_csv('data/data_all.csv')\n",
    "print(data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "m_setup = setup(data=data, target='label', normalize=True, #bin_numeric_features=['illum'],\n",
    "                   feature_interaction=False, \n",
    "                   feature_ratio=False,\n",
    "                   trigonometry_features=True,\n",
    "                   use_gpu=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "m_setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "best_model = compare_models(n_select=6)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# tuned_top = [tune_model(x) for x in best_model]\n",
    "bagged_top = [ensemble_model(x) for x in tuned_top]\n",
    "blender = blend_models(estimator_list=best_model)\n",
    "best = automl(optimize = 'F1')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "m = create_model('rf')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "m_tune = tune_model(m, optimize='Kappa')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot_model(tuned_dt, plot='auc')\n",
    "evaluate_model(m)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_model(tuned_dt, plot='feature')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
  },
  "kernelspec": {
   "display_name": "Python 3.8.10 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}